

TEST REPORT IEC 61727: 2004

Photovoltaic (PV) systems - Characteristics of the utility interface IEC 62116: 2014

Test procedure of islanding prevention measures for utility-interconnected photovoltaic inverters

Report Reference No.....ES190702002P

Compiled by (name + signature): Double Lee

Approved by (name + signature): Paladin Hu

Date of issue......July 30. 2019

Total number of pages...... 36 pages

Testing Laboratory name...... EMTEK(SHENZHEN) CO., LTD.

Guangdong, China

Testing location/ address...... Same as above

Applicant's name Shenzhen ATESS Power Technology Co.,Ltd

Address...... 1st Floor of Building 3 at Sector B and 3rd Floor of Building 9,

Henglong Industrial Park, No.4 Industrial Zone, Shuitian Community, Shiyan Street, Baoan District, Shenzhen

Test specification:

Standard IEC 61727: 2004

IEC 62116: 2014

Test procedure IEC report

Non-standard test method.....: N/A

Test Report Form No..... IEC61727A

IEC62116A

Test Report Form(s) Originator EMTEK

Master TRF...... Dated 2013-06

Test item description Hybrid Power systems

Trade Mark

ATESS

Manufacturer..... Shenzhen ATESS Power Technology Co.,Ltd

Address...... 1st Floor of Building 3 at Sector B and 3rd Floor of Building 9,

Henglong Industrial Park, No.4 Industrial Zone, Shuitian Community, Shiyan Street, Baoan District, Shenzhen

Model/Type reference...... HPS150

Firmware Version..... TI1.0

Ratings..... See the rating label.

TRF No.: IEC61727A+IEC62116A Page 1 of 36 Report1 No.: ES190702002P Ver. 1.0

Possible test case verdicts:	
- test case does not apply to the test object:	N/A(Not applicable)
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	July 05. 2019
Date (s) of performance of tests:	July 05. 2019 to July 30. 2019
General remarks:	
"(see Attachment #)" refers to additional information apple (see appended table)" refers to a table appended to the The tests results presented in this report relate only to the This report shall not be reproduced except in full without List of test equipment must be kept on file and available Additional test data and/or information provided in the a Throughout this report a ☐ comma / ☒ point is used a The IEC61727 does not provide any limits of accuracy for the IEC61727 does not provide any limits of	the report. the object tested. ut the written approval of the testing laboratory. e for review. attachments to this report. as the decimal separator. for the utility voltage and frequency measurement of
the PV-system. Therefore the values for tolerances of the Metropolitan Electricity Authority (MEA 2013).	given in the grid-connected inverter regulations
 General product information: It's intended for professional incorporation into Hyb component test basis; The enclosure assembly was secured by screws; The PCE shall be used at specified ambient tempe 	

TRF No.: IEC61727A+IEC62116A Page 2 of 36 Report1 No.: ES190702002P Ver. 1.0

Copy of marking plate:

ATES	
Model	HPS150
PV MPPT Range	480-820V
PV Max.Input Current	375A
Battery Min. Voltage	350V
Nominal AC Voltage	400 Vac
Nominal AC Current	217A
AC Operating Freque	ncy 50 Hz
AC Nominal power	150KVA
Power Factor 0.9	agging0.9leading
Ingress Protection	IP20
Communication Port	RS485
Operating Temp.Rang	ge -25 to +55 °C
DATE OF MADE	
S/N:	2T000500
(E	WWW.ATESSP.COM MADE IN CHINA

Interface protection settings with deviations according the grid-connected inverter regulations of the Metropolitan Electricity Authority (MEA)

(Thailand MEA)

Parameter	Max. clearance time Trip setting			
Over voltage (level 2)	0.05s	230V +12% (311V)**		
Over voltage (level 1)	2.0s	230V +4.3% (240V)		
Under voltage (level 1)	2.0s	230V -13% (200V)		
Under voltage (level 2)	0.1s	230V -50% (115V)**		
Over frequency	0.1s 50Hz + 2% (52.0Hz)			
Under frequency	0.1s 50Hz -2% (47.0Hz)			
Reconnection time	At least 120s			
Permanent DC-injection	0.5% of rated inverter output current			
Loss of main IEC 62116:2014	Inverter shall detect and disconnect within 2s			

^{*} Trip time refers to the time between the abnormal condition occurring and the inverter ceasing to energize the utility line. The PV system control circuits shall actually remain connected to the utility to allow sensing of utility electrical conditions for use by the "reconnect" feature.

^{**} The inverter can be adjusted for overvoltage trip setting up to 311V.

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

SECTIO	N 4: Utility compatibility		
4	General The quality of power provided by the PV system for the on-site AC loads and for power delivered to the utility is governed by practices and standards on voltage, flicker, frequency, harmonics and power factor. Deviation from these standards represents out-of-bounds conditions and may require the PV system to sense the deviation and properly disconnect from the utility system. All power quality parameters (voltage, flicker, frequency, harmonics, and power factor) must be measured at the utility interface/ point of common coupling unless otherwise specified.	Noticed	P
4.1	Voltage, current and frequency The PV system AC voltage, current and frequency shall be compatible with the utility system.	Derived from tests	Р
4.2	Normal voltage operating range Utility-interconnected PV systems do not normally regulate voltage; they inject current into the utility. Therefore, the voltage operating range for PV inverters is selected as a protection function that responds to abnormal utility conditions, not as a voltage regulation function.	Derived from tests	P
4.3	Flicker The operation of the PV system should not cause voltage flicker in excess of limits stated in the relevant sections of IEC 61000-3-3 for systems less than 16 A or IEC 61000-3-5 for systems with current of 16 A and above.	See table 4.3	Р
4.4	DC injection The PV system shall not inject DC current greater than 0.5 % of the rated inverter output current, into the utility AC interface under any operating condition.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See table 4.4	Р
4.5	Normal frequency operating range The PV system shall operate in synchronism with the utility system, and within the frequency trip limits defined in MEA.	The following deviations were used: a) Metropolitan Electricity	Р

	IEC 61727		
Clause	Requirement – Test	Result - Remark	Verdict
		Authority (MEA 2013) See table 4.5 and 5.2.2	
4.6	Harmonics and waveform distortion Low levels of current and voltage harmonics are desirable; the higher harmonic levels increase the potential for adverse effects on connected equipment. Acceptable levels of harmonic voltage and current depend upon distribution system characteristics, type of service, connected loads/apparatus, and established utility practice. The PV system output should have low current-distortion levels to ensure that no adverse effects are caused to other equipment connected to the utility system. Total harmonic current distortion shall be less than 5 % at rated inverter output. Each individual harmonic shall be limited to the percentages listed in clause 3.1.1 of MEA.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See tables 4.6 (1) and 4.6 (2)	P
4.7	Power factor The power factor base on products.		Р
SECTION	I 5: Personnel safety and equipment protection		
5	General This Clause provides information and considerations for the safe and proper operation of the utility-connected PV systems.	Noticed	Р
5.1	Loss of utility voltage To prevent islanding, a utility connected PV system shall cease to energize the utility system from a de-energized distribution line irrespective of connected loads or other generators within specified time limits. A utility distribution line can become de-energized for several reasons. For example, a substation breaker opening due to fault conditions or the distribution line switched out during maintenance. If inverters (single or multiple) have DC SELV input and have accumulated power below 1 kW then no mechanical disconnect (relay) is required.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013)	P
5.2	Over/under voltage and frequency Abnormal conditions can arise on the utility	The following deviations were used:	Р

TRF No.: IEC61727A+IEC62116A Page 5 of 36 Report1 No.: ES190702002P Ver. 1.0

	IEC 61727			
Clause	Requirement – Test	Result - Remark Ver		
	system that requires a response from the connected photovoltaic system. This response is to ensure the safety of utility maintenance personnel and the general public, as well as to avoid damage to connected equipment, including the photovoltaic system. The abnormal utility conditions of concern are voltage and frequency excursions above or below the values stated in this Clause, and the complete disconnection of the utility, presenting the potential for a distributed resource	a) Metropolitan Electricity Authority (MEA 2013) See table 5.2.1 and 5.2.2		
5.2.1	island. Over/under voltage When the interface voltage deviates outside the conditions specified in Table 2, the photovoltaic system shall cease to energize the utility distribution system. This applies to any phase of a multiphase system. All discussions regarding system voltage refer to the local nominal voltage. The system shall sense abnormal voltage and respond. The following conditions should be met, with voltages in RMS and measured at the point of utility connection. (see clause 5.2.1 Table 2 – Response to abnormal voltages) The purpose of the allowed time delay is to ride through short-term disturbances to avoid excessive nuisance tripping. The unit does not have to cease to energize if the voltage returns to the normal utility continuous operation condition within the specified trip time.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See table 5.2.1	P	
5.2.2	Over/under frequency When the utility frequency deviates outside the specified conditions the photovoltaic system shall cease to energize the utility line. The unit does not have to cease to energize if the frequency returns to the normal utility continuous operation condition within the specified trip time. When the utility frequency is outside the range of ±1 Hz, the system shall cease to energize the utility line within 0.1 s. The purpose of the allowed range and time delay is to allow continued operation for short-term disturbances and to avoid excessive nuisance tripping in weak-utility system conditions.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See table 5.2.2	P	
5.3	Islanding protection The PV system must cease to energize the utility	The following deviations were used:	Р	

TRF No.: IEC61727A+IEC62116A Page 6 of 36 Report1 No.: ES190702002P Ver. 1.0

	IEC 61727		
Clause	Requirement – Test	Result - Remark	Verdict
	line within 0.3 s of loss of utility.	a) Metropolitan Electricity Authority (MEA 2013)	
5.4	Response to utility recovery Following an out-of-range utility condition that has caused the photovoltaic system to cease energizing, the photovoltaic system shall not energize the utility line for 120 s after the utility service voltage and frequency have recovered to within the specified ranges.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See table 5.2 (1) and 5.2 (2)	P
5.5	Earthing The utility interface equipment shall be earthed /grounded in accordance with IEC 60364-7-712.	Stated in the manual.	Р
5.6	Short circuit protection The photovoltaic system shall have short -circuit protection in accordance with IEC 60364-7-712.	Stated in the manual.	Р
5.7	Isolation and switching A method of isolation and switching shall be provided in accordance with IEC 60364-7-712.	Stated in the manual.	Р

TRF No.: IEC61727A+IEC62116A Page 7 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

Test overv	riew:	Γ
Clause	Test	Result
	Response to protection operation - fault condition tests (according VDE0126-	
1	1-1:2006)	Р
4	Type test:	1
4.3	Voltage Fluctuations and Flicker	Р
4.4	Monitoring of DC-Injection	Р
4.5	Normal frequency operating range (see 5.2.2 below)	Р
4.6	Harmonics and waveform distortion	Р
4.7	Power factor	Р
5.2.1	Voltage monitoring	Р
5.2.2	Frequency monitoring	Р

TRF No.: IEC61727A+IEC62116A Page 8 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

	1. Respo	nse to pro	tection opera	ation - faul	t conditio	n tests		Р
	Am	bient temp	perature (oC)	:		24,9	9 C	_
No.	Component no.	Fault	Test voltage (V)	Test time	Fuse no.	Fuse current (A)	Res	ult
1	PV input	Polarity reverse	820Vdc / 230Vac	10 minutes	/	/	Inverter alarm, no hazard.	No output,
2	AC output L-L	S-C	820Vdc / 230Vac	10 minutes	/	/	Breaker is brok	
3	AC output L-N	S-C	820Vdc / 230Vac	10 minutes	/	/	Breaker is brok	•
4	AC output	Phase sequen ce errors	820Vdc / 230Vac	10 minutes	1	/	Inverter work n	ormally.
5	VCC of main CPU	O-C	820Vdc / 230Vac	10 minutes	/	/	Error message communication	
6	VCC of secondary CPU	O-C	820Vdc / 230Vac	10 minutes	/	/	Error message communication	
7	Communication of main CPU and secondary CPU	O-C	820Vdc / 230Vac	10 minutes	/	/	Error message communication	
8	C1 (I/O board)	S-C	820Vdc / 230Vac	10 minutes	/	/	Inverter discon grid immediate down, No outp hazard.	ly and shut
9	C16 (I/O board)	S-C	820Vdc / 230Vac	10minu tes	1	/	Inverter discon grid immediate down, No outp hazard.	ly and shut
10	BUS R251 (I/O board)	O-C	820Vdc / 230Vac	10minu tes	/	/	Error message Inverter discon grid immediate down.	nected from
11	D52 (I/O board)	S-C	820Vdc / 230Vac	10minu tes	/	/	Inverter work n	ormally.
12	Q6(PIN1-PIN2) (I/O board)	S-C	820Vdc / 230Vac	10minu tes	/	/	Inverter work n	ormally.

TRF No.: IEC61727A+IEC62116A Page 9 of 36 Report1 No.: ES190702002P Ver. 1.0

	IEC 61727		
Clause	Requirement – Test	Result - Remark	Verdict

	<u>.</u>				•		•
13	R325 (I/O board)	O-C	820Vdc / 230Vac	10minu tes	/	/	Inverter work normally.
14	RY3A (I/O board)	S-C	820Vdc / 230Vac	10minu tes	/	/	Inverter doesn't disconnect with grid.
15	Q1(PIN2-PIN3) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
16	RY9A (I/O board)	O-C	820Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
17	Q28(PIN2-PIN3)(I/O board)	O-C	820Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
18	Q10(PIN2-PIN3) (I/O board)	O-C	820Vdc / 230Vac	2 minutes	/	/	Error message: "101". Inverter disconnected from grid immediately and shut down.
19	Q10(pin1-pin2) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
20	TX5(PIN4- PIN8) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shut down.
21	Q7(PIN2-PIN3) (I/O board)	O-C	820Vdc / 230Vac	2 minutes	/	/	Inverter work normally.
22	C151 (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
23	C152 (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
24	C294 (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
25	C305 (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.

TRF No.: IEC61727A+IEC62116A Page 10 of 36 Report1 No.: ES190702002P Ver. 1.0

	IEC 61727		
Clause	Requirement – Test	Result - Remark	Verdict

	L				L		L
26	C314 (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
27	C322(I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
28	D60(I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
29	Q40(PIN2-PIN3) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Error message: "101". Inverter disconnected from grid immediately.
30	Q40(PIN1-PIN2) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately.
31	TX5(PIN4- PIN8) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shut down.
32	TX1(PIN1- PIN3) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter work normally.
33	Q33(PIN2- PIN3) (I/O board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Inverter work normally.
34	C335(I/O board)	S-C	820Vdc / 230Vac	2 minutes	1	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
35	C276 (CTRL board)	S-C	820Vdc / 230Vac	2 minutes	/	/	PVA voltage detection is 0. Inverter disconnected from grid immediately.
36	C168 (CTRL board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Error message: "122".
37	C261(CTRL board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Leakage current is fault. Inverter disconnected from grid immediately and shut down.

	IEC 61727		
Clause	Requirement – Test	Result - Remark	Verdict

38	C262(CTRL board)	S-C	820Vdc / 230Vac	2 minutes	/	/	Leakage current is fault. Inverter disconnected from grid immediately and shut down.
39	C151(CTRL board)	S-C	820Vdc / 230Vac	2 minutes	1	/	Error message: "101". Inverter disconnected from grid immediately and shut down.
40	GFCI power(CTRL board)	O-C	820Vdc / 230Vac	10 minutes	/	/	Error message: "119". Inverter disconnected from grid immediately.
41	C292 (power board)	S-C	820Vdc / 230Vac	10 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
42	C299 (power board)	S-C	820Vdc / 230Vac	10 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.

TRF No.: IEC61727A+IEC62116A Page 12 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

,									
4.3 Voltage fluctuation and flicker									
the grid-connecte	ed inverter regulations of the	Metropolitan Electricity Auth	ority(MEA 2013)						
Test conditions: Maximum permissible voltage fluctuation (expressed as a percentage of nomina voltage at 100 % power) and flicker as per EN 61000-3-5									
	Starting Stopping Running								
Limit	3.3%	3.3%	Pst = 1.0	Plt = 0.65					
Test value	*	*	*	*					
	Inverter > 16A								
Limit	dc% =3.3 Pst = 1.0 F								
Test value	0.0	0.08 0.32							

Note

The stationary deviance of dc% is more relevant than the dynamic deviance of dmax at starting and stopping. Mains Impedance according EN61000-3-11:Rmax = 0.24Ω ; jXmax= 0.15Ω @50Hz (|Zmax| = $0.283/0.4717\Omega$)

Calculation of the maximum permissible grid impedance at the point of common coupling based on dc: Zmax = Zref *3.3% / dc(Pn)

The tests should be based on the limits of the EN 61000-3-11 for more than 16A.

4.4 Monitoring of Pern the grid-connected inv Authority(MEA 2013)	Р		
MEA Limit:		0.5% of Inom	
Output power:	33%	66%	100%
As % of rated AC current, L1:	0.043%	0.063%	0.063%
As % of rated AC current, L2:	0.087%	0.082%	0.047%
As % of rated AC current, L3:	0.090%	0.093%	0.078%

Note:

Testing must be performed according to WI 10.4.-03.doc rev D. The internal temperature of the EUT must be stabilized. No temperature drift of more than 2K within 1 hour is allowed.

4.6	TABLE: Harmonic Current Limit Test	Р]
	The grid-connected inverter regulations of the Metropolitan Electricity Authority(MEA 2013)		

TRF No.: IEC61727A+IEC62116A Page 13 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

			Condition o		. 50/		Powe		
			lance linear				49.9		P
			lance linear				99.9		P
	supplying		lance linear				149.		P
0.1	000/	Output Current Harmonics Measurement			I	Limit	Result		
Order	33% of rated		66% o		100% c		Dhana	(% of output	
	output		output		output		Phase	current)	
4	(A)	(%)	(A)	(%)	(A)	(%)	1.4		
1	71.683	99.976	143.704	99.963	216.954	99.958	L1	40/	P
2	0.133	0.185	0.261	0.181	0.234	0.202	L1	<1%	P
3	0.351	0.488	0.739	0.513	0.561	0.484	L1	<4%	P
4	0.132	0.184	0.285	0.198	0.232	0.200	L1	<1%	Р
5	0.908	1.261	2.707	1.880	2.383	2.054	L1	<4%	Р
6	0.052	0.072	0.122	0.085	0.104	0.090	L1	<1%	P
7	0.314	0.436	1.581	1.098	1.576	1.359	L1	<4%	P
8	0.078	0.109	0.167	0.116	0.137	0.118	L1	<1%	P
9	0.094	0.131	0.204	0.142	0.157	0.135	L1	<4%	Р
10	0.074	0.103	0.181	0.126	0.143	0.123	L1	<1%	Р
11	0.242	0.336	0.802	0.557	0.992	0.855	L1	<2%	Р
12	0.085	0.118	0.180	0.125	0.151	0.130	L1	<0.5%	Р
13	0.250	0.347	0.504	0.350	0.688	0.593	L1	<2%	Р
14	0.101	0.140	0.213	0.148	0.193	0.166	L1	<0.5%	Р
15	0.119	0.165	0.251	0.174	0.210	0.181	L1	<2%	Р
16	0.112	0.155	0.245	0.170	0.195	0.168	L1	<0.5%	Р
17	0.284	0.394	0.336	0.233	0.556	0.479	L1	<1.5%	Р
18	0.122	0.170	0.252	0.175	0.209	0.180	L1	<0.375%	Р
19	0.194	0.269	0.348	0.242	0.430	0.371	L1	<1.5%	Р
20	0.141	0.196	0.281	0.195	0.244	0.210	L1	<0.375%	Р
21	0.142	0.197	0.292	0.203	0.251	0.216	L1	<1.5%	Р
22	0.147	0.204	0.302	0.210	0.248	0.214	L1	<0.375%	Р
23	0.223	0.310	0.413	0.287	0.389	0.335	L1	<0.6%	Р
24	0.087	0.121	0.183	0.127	0.264	0.128	L1	<0.15%	Р
25	0.199	0.276	0.393	0.273	0.327	0.282	L1	<0.6%	Р
26	0.030	0.042	0.068	0.047	0.293	0.053	L1	<0.15%	Р
27	0.180	0.250	0.370	0.257	0.296	0.255	L1	<0.6%	Р
28	0.041	0.057	0.089	0.062	0.309	0.066	L1	<0.15%	Р
29	0.007	0.010	0.055	0.038	0.355	0.066	L1	<0.6%	Р
30	0.052	0.072	0.112	0.078	0.324	0.079	L1	<0.15%	Р
31	0.247	0.343	0.435	0.302	0.342	0.295	L1	<0.6%	Р
32	0.069	0.096	0.135	0.094	0.349	0.091	L1	<0.15%	Р
33	0.215	0.299	0.444	0.308	0.355	0.306	L1	<0.6%	Р
34	0.014	0.019	0.081	0.056	0.013	0.011	L1	<0.15%	Р
35	0.040	0.056	0.037	0.026	0.009	0.008	L1	<0.3%	P
36	0.007	0.010	0.027	0.019	0.002	0.002	L1	<0.075%	P
37	0.070	0.097	0.163	0.113	0.010	0.009	L1	<0.3%	P
38	0.024	0.034	0.020	0.014	0.009	0.008	L1	<0.075%	P
39	0.009	0.012	0.029	0.020	0.003	0.003	L1	<0.3%	P
40	0.036	0.050	0.014	0.010	0.007	0.006	L1	<0.075%	P
THDi		2.345		2.218		2.843	L1	≤ 5%	P
Suppler	nentary info		ı		I		ı	1	1
-	-								

Clause	Requirement – Test		Result - Remark	Verdict

4.6	TABLE: H	armonic Cur	rent Limit To	est					Р	
	The grid-co	onnected inv	erter regula	tions of the	Metropolit	an Electric	city Authority(N	ИЕА 2013)		
		С	ondition of	test			Power (kV	V)		
	supplying	power to ba	lance linear	loads 33%	±5%		49.935		Р	
		power to ba					99.984		Р	
		power to ba					149.919		Р	
			out Current			nent		Limit	Result	
Order	rder 33% of rated 66% of rated 100% of rated						(% of output			
		current	output current		output current		Phase	current)		
	(A)	(%)	(A)	(%)	(A)	(%)		,		
1	71.713	99.943	143.875	99.965	216.813	99.958	L2		Р	
2	0.387	0.334	0.690	0.892	1.150	0.991	 L2	<1%	P	
3	0.536	0.462	0.326	0.421	0.757	0.653	L2	<4%	P	
4	0.065	0.056	0.132	0.171	0.252	0.217	L2	<1%	<u>.</u> Р	
5	0.495	0.427	1.338	1.730	3.234	2.788	L2	<4%	P	
6	0.184	0.159	0.071	0.092	0.125	0.108	L2	<1%	P	
7	0.966	1.143	0.923	1.193	1.830	1.578	L2	<4%	- ' P	
8	0.900	0.045	0.923	0.054	0.071	0.061	L2	<1%	P	
9	0.017	0.043	0.042	0.034	0.071	0.061	L2	<4%	P	
	0.045	0.091	0.057	0.120	0.179	0.154	L2	<1%	P	
10							L2 L2	<1%	P	
11	0.293	0.767	0.399	0.516	1.348	1.162				
12	0.014	0.038	0.024	0.031	0.060	0.052	L2	<0.5%	P	
13	0.233	0.610	0.380	0.491	0.796	0.686	L2	<2%	P	
14	0.035	0.093	0.061	0.079	0.152	0.131	L2	<0.5%	P	
15	0.098	0.256	0.217	0.280	0.168	0.145	L2	<2%	Р	
16	0.075	0.197	0.105	0.136	0.387	0.334	L2	<0.5%	P	
17	0.278	0.729	0.552	0.713	0.536	0.462	L2	<1.5%	Р	
18	0.019	0.050	0.036	0.047	0.065	0.056	L2	<0.375%	P	
19	0.137	0.358	0.331	0.428	0.495	0.427	L2	<1.5%	P	
20	0.030	0.079	0.050	0.065	0.184	0.159	L2	<0.375%	P	
21	0.032	0.085	0.071	0.092	0.166	0.143	L2	<1.5%	Р	
22	0.025	0.065	0.030	0.039	0.052	0.045	L2	<0.375%	P	
23	0.077	0.201	0.108	0.140	0.510	0.440	L2	<0.6%	P	
24	0.005	0.012	0.015	0.020	0.051	0.044	L2	<0.15%	P	
25	0.044	0.115	0.040	0.052	0.316	0.272	L2	<0.6%	P	
26	0.010	0.027	0.008	0.010	0.063	0.054	L2	<0.15%	P	
27	0.006	0.017	0.013	0.017	0.029	0.025	L2	<0.6%	Р	
28	0.004	0.010	0.004	0.005	0.030	0.026	L2	<0.15%	Р	
29	0.018	0.046	0.019	0.024	0.148	0.128	L2	<0.6%	Р	
30	0.004	0.010	0.003	0.004	0.023	0.020	L2	<0.15%	Р	
31	0.027	0.071	0.023	0.030	0.153	0.132	L2	<0.6%	Р	
32	0.007	0.019	0.010	0.013	0.041	0.035	L2	<0.15%	Р	
33	0.003	0.007	0.002	0.003	0.023	0.020	L2	<0.6%	Р	
34	0.003	0.008	0.004	0.005	0.026	0.022	L2	<0.15%	Р	
35	0.007	0.018	0.003	0.004	0.068	0.059	L2	<0.3%	Р	
36	0.003	0.009	0.005	0.006	0.015	0.013	L2	<0.075%	Р	
37	0.020	0.052	0.008	0.010	0.116	0.100	L2	<0.3%	P	
38	0.006	0.016	0.002	0.003	0.043	0.037	 L2	<0.075%	P	
39	0.006	0.015	0.009	0.011	0.017	0.015	L2	<0.3%	P	
40	0.008	0.022	0.003	0.004	0.061	0.053	L2	<0.075%	P	

TRF No.: IEC61727A+IEC62116A Page 15 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

 THDi
 -- 2.217
 -- 1.974
 -- 2.356
 L2
 ≤ 5%
 P

 Supplementary information:

4.6	TABLE: Ha	armonic Cui	rrent Limit Te	est					Р
	The grid-co	onnected in	verter regula	tions of the	Metropolit	an Electri	city Authority(I	MEA 2013)	
			Condition of				Power(
	,		lance linear				49.93		Р
			lance linear				99.98		Р
	supplying		lance linear				149.9		P
			put Current					Limit	Result
Order	33% o		66% of		100% c		D i	(% of output	
	output		output current output curre						
4	(A)	(%)	(A)	(%)	(A)	(%)	1.0		
1	71.892	99.951	143.944	99.965	216.905	99.972	L3	40/	P
2	0.133	0.115	0.200	0.172	0.150	0.129	<u>L3</u>	<1%	P
3	0.187	0.161	0.516	0.445	0.781	0.673	L3	<4%	Р
4	0.146	0.126	0.205	0.177	0.187	0.161	L3	<1%	Р
5	0.920	0.793	0.495	0.427	0.055	0.144	L3	<4%	Р
6	0.150	0.129	0.239	0.206	0.101	0.087	L3	<1%	P P
7	0.781	0.673	0.948	1.226	1.724	1.486	L3	<4%	P
8	0.187	0.161	0.087	0.113	0.133	0.115	L3	<1%	P
9	0.055	0.144	0.142	0.184	0.187	0.161	L3	<4%	P
10	0.041	0.107	0.104	0.134	0.146	0.126	L3 L3	<1% <2%	P
11 12	0.120	0.315 0.121	0.406 0.098	0.525 0.127	0.920 0.150	0.793 0.129	L3	<0.5%	P
	0.046 0.150	0.121	0.098	0.127	0.781	0.129	L3	<0.5%	P
13 14	0.150	0.393	0.306	0.396	0.781	0.073	L3	<0.5%	P
15	0.034	0.141	0.112	0.143	0.167	0.187	L3	<2%	P
16	0.061	0.161	0.134	0.173	0.217	0.187	L3	<0.5%	P
17	0.132	0.346	0.191	0.173	0.516	0.172	L3	<1.5%	P
18	0.066	0.174	0.136	0.176	0.205	0.177	L3	<0.375%	P
19	0.122	0.321	0.183	0.236	0.495	0.427	L3	<1.5%	P
20	0.076	0.199	0.151	0.195	0.239	0.206	L3	<0.375%	P
21	0.093	0.244	0.157	0.203	0.261	0.225	L3	<1.5%	P
22	0.080	0.209	0.163	0.211	0.247	0.213	L3	<0.375%	P
23	0.109	0.287	0.207	0.267	0.378	0.326	L3	<0.6%	Р
24	0.085	0.124	0.175	0.126	0.266	0.129	L3	<0.15%	Р
25	0.109	0.286	0.227	0.294	0.358	0.309	L3	<0.6%	Р
26	0.093	0.144	0.190	0.145	0.287	0.147	L3	<0.15%	Р
27	0.097	0.254	0.207	0.267	0.302	0.26	L3	<0.6%	Р
28	0.099	0.066	0.203	0.062	0.310	0.067	L3	<0.15%	Р
29	0.115	0.302	0.227	0.294	0.345	0.297	L3	<0.6%	Р
30	0.105	0.076	0.217	0.078	0.322	0.078	L3	<0.15%	Р
31	0.132	0.347	0.248	0.321	0.353	0.304	L3	<0.6%	Р
32	0.113	0.097	0.233	0.101	0.345	0.097	L3	<0.15%	Р
33	0.126	0.329	0.251	0.324	0.357	0.308	L3	<0.6%	Р
34	0.006	0.016	0.026	0.034	0.014	0.012	L3	<0.15%	Р
35	0.026	0.067	0.029	0.038	0.006	0.005	L3	<0.3%	Р
36	0.004	0.01	0.018	0.023	0.008	0.007	L3	<0.075%	Р

TRF No.: IEC61727A+IEC62116A Page 16 of 36 Report1 No.: ES190702002P Ver. 1.0

Ρ

IEC 61727					
Clause	Requirement – Test		Result - Remark	Verdict	

37	0.036	0.095	0.012	0.015	0.008	0.007	L3	<0.3%	Ρ
38	0.013	0.034	0.070	0.091	0.005	0.004	L3	<0.075%	Р
39	0.008	0.021	0.009	0.012	0.003	0.003	L3	<0.3%	Р
40	0.021	0.055	0.010	0.013	0.003	0.003	L3	<0.075%	Р
THDi		2.883		2.721		3.097	L3	≤ 5%	Р

Supplementary information:

4.7 Power Factor			Р
the grid-connected inv	verter regulations of the Metr	opolitan Electricity Authority(MEA	. 2013)
Load (%)	Location	Measured	Limit
10	L1(230Vac)	0.9941	N/A
	L2(230Vac)	0.9942	
	L3(230Vac)	0.9945	
50	L1(230Vac)	0.9971	>0.90
	L2(230Vac)	0.9972	>0.90
	L3(230Vac)	0.9979	>0.90
100	L1(230Vac)	0.9995	>0.90
	L2(230Vac)	0.9996	>0.90
	L3(230Vac)	0.9994	>0.90

Note:

The PV system shall have a lagging power factor greater than 0.95 when the output is greater than 50% of the rated inverter output power.

5.2.1 Voltage monitoring

1.8.4.7 Under and Over Voltage Protection(MEA: 2013)

1.11.4.10 Response to utility recovery

the grid-connected inverter regulations of the Metropolitan Electricity Authority(MEA 2013)

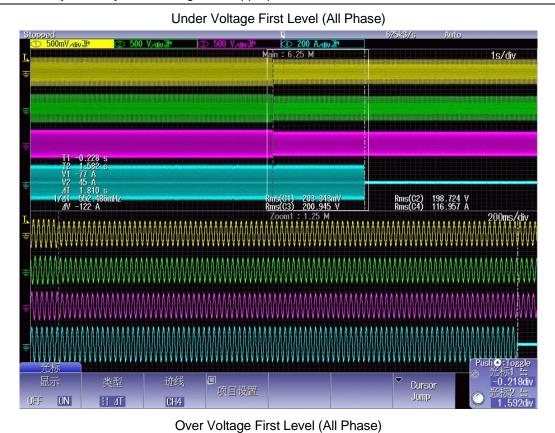
First Level

Test conditions:	S: Output power: 60.35kW Frequency: 50 Hz							Z			
		Unde	Under Voltage				Over Voltage				
Parameter	/		Voltage (V)				Voltage (V)				
Set Value	/		199V				241V				
Measured trip	Phase	ALL	L1	L2	L3	Phase	ALL	L1	L2	L3	
value(V)	/	198.7	198.4	198.8	198.7	/	240.6	241.2	240.2	240.7	
		198.4	198.6	198.3	198.7	_	240.7	241.0	240.7	240.6	

TRF No.: IEC61727A+IEC62116A Page 17 of 36 Report1 No.: ES190702002P Ver. 1.0

					IEC 617	727					
Clause	Requi	rement – Te	st				Result - R	emark		V	erdict
			198.3	198.6	198.4	198.8		240.5	241.2	240.6	240.3
		_	198.4	198.4	198.5	198.8		240.3	241.0	240.3	240.4
		/	198.6	198.5	198.7	198.6	/	240.6	241.2	240.1	240.7
Parame	ter	/		Tim	ie(s)	I	/		Time	e(s)	
Limit		/		€2	2.0s		/		≤2	.0s	
Disconnec	ction	204V to	All	L1	L2	L3	236V to 242V	All	L1	L2	L3
time (Se	ec)	198V	1.800	1.812	1.812	1.810		1.796	1.798	1.812	1.796
			1.810	1.808	1.800	1.812		1.804	1.810	1.806	1.804
		1.804	1.812	1.808	1.810		1.800	1.812	1.808	1.810	
			1.798	1.812	1.796	1.804		1.800	1.806	1.806	1.810
			1.796	1.804	1.812	1.804		1.802	1.812	1.808	1.800
Reconnection		At least		220s				220s			
time (Sec) 120s 120s 120s											
Test condit				Out	out nowe	r: 62 /11	W Frequen	ov: 50 H:	7		
Test condit	110115.		Linde	er Voltag		1. 02.41	Trequen		r Voltage		
Parame	ter	/	Onde		ge (V)		/	Ove			
Set Valu		/			4V		/	Voltage (V) 311V			
Measured		Phase	All	L1	L2	L3	Phase				L3
value(\	-	/	114.6	114.4	114.3	114.3	/	309.8	309.9	309.8	309.8
			114.4	114.5	114.4	114.7		309.6	309.2	309.7	309.5
		_	114.3	114.6	114.4	114.2		309.7	309.5	309.7	309.5
			114.7	114.3	114.5	114.3		309.7	309.4	309.3	309.6
		/	114.4	114.5	114.3	114.4	/	309.8	309.8	309.8	309.9
Parame	ter	/		Time	e(ms)		/		Time	(ms)	
Limit		/		≤10	00ms		/		≤50)ms	
Disconnec		204V to	All	L1	L2	L3	236V to	All	L1	L2	L3
time (mS	ec)	113V	65	63	63	68	311V	30	37	33	32
			70	68	66	68		29	28	30	32
			71	65	66	75		28	32	31	37
			73	68	67	64		41	38	38	36
			72	68	78	64		43	38	36	33
Reconnec	ction	At least		22	24s		At least		22	1s	

TRF No.: IEC61727A+IEC62116A Page 18 of 36 Report1 No.: ES190702002P Ver. 1.0

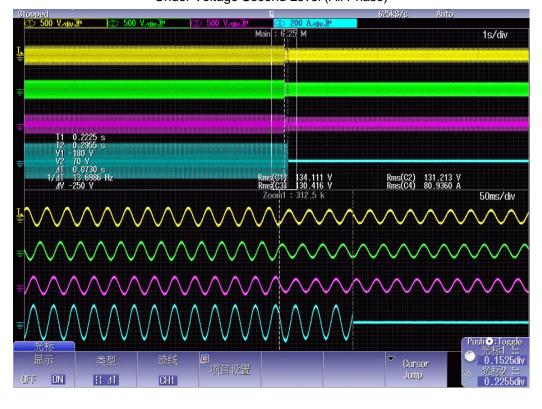

IEC 61727					
Clause	Requirement – Test		Result - Remark	Verdict	

time (Sec)	120s		120s	
------------	------	--	------	--

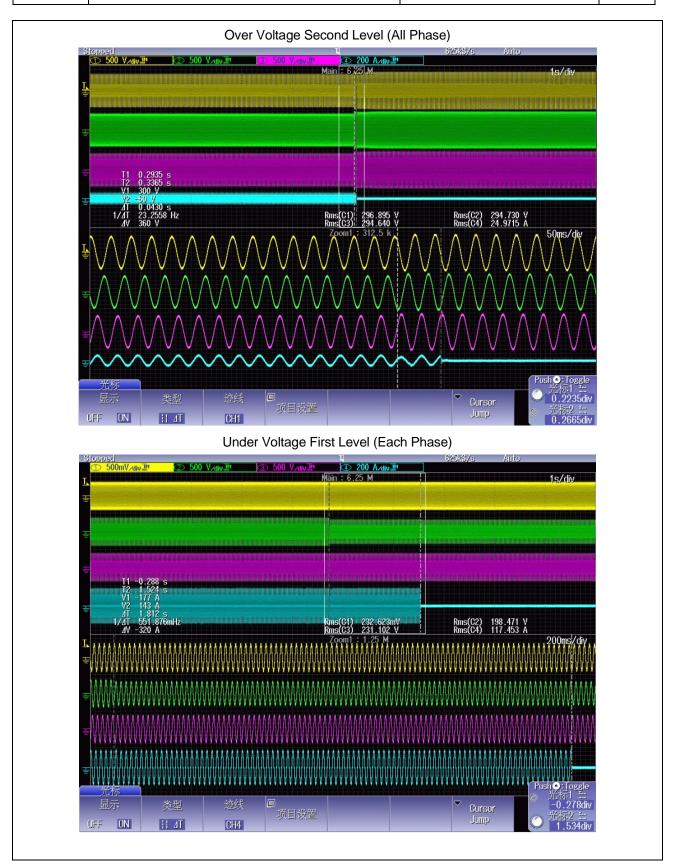
Note:

The tests are according MEA: 2013. The voltage setting of EUT are set for the tests as stated to 199V, 114V for undervoltage and 241V, 311V for overvoltage.


Response to utility recovery is according to the appropriate IEEE or IEC standard test methods.

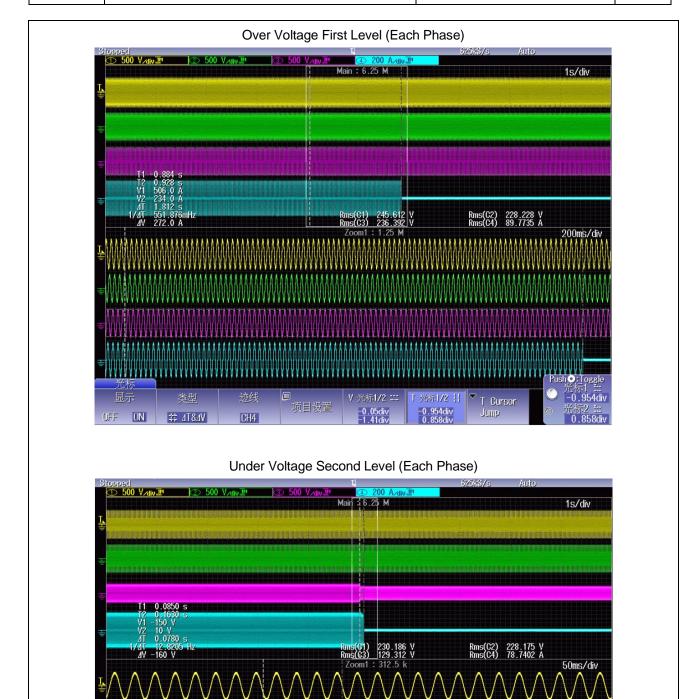

TRF No.: IEC61727A+IEC62116A Page 19 of 36 Report1 No.: ES190702002P Ver. 1.0

Clause	Requirement – Test		Result - Remark	Verdict


Under Voltage Second Level (All Phase)

TRF No.: IEC61727A+IEC62116A Page 20 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict



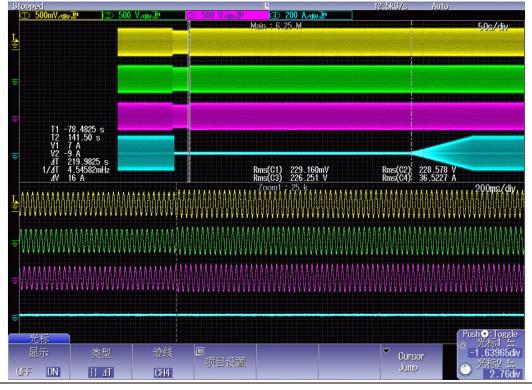
Push : Toggle 光标1 ::: 0.0150div

0.0930div

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

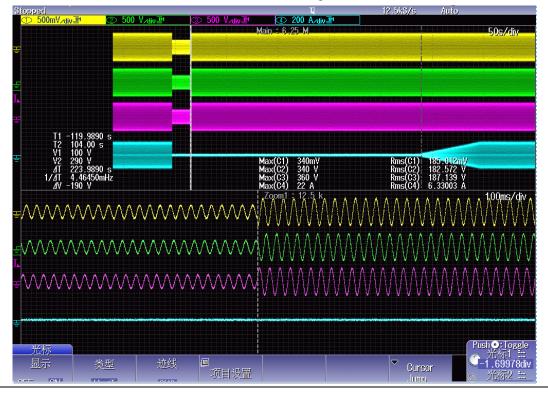

OFF ON

| AT

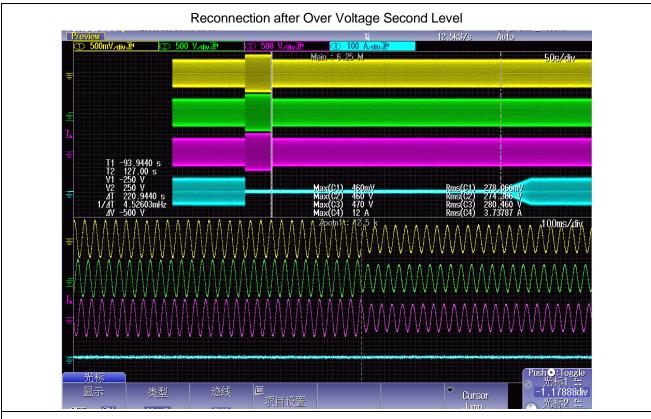

CH1

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

Reconnection after Under Voltage First Level



		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict



Reconnection after Under Voltage Second Level

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

Note:

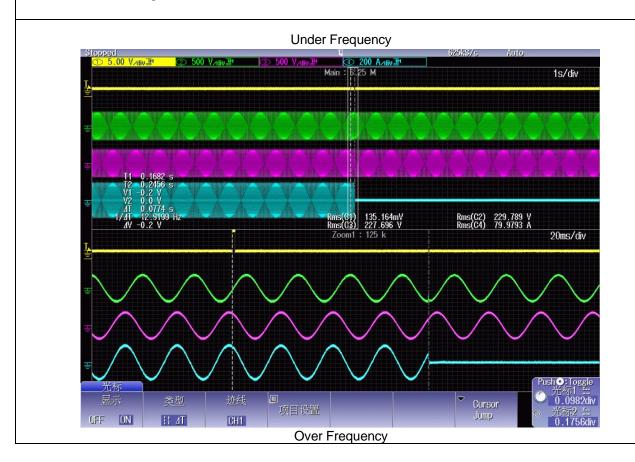
CH1, CH2, CH3: Grid voltage; CH4, CH5, CH6: EUT of current

Test conditions:	Test conditions: Any output power level	
	Under Frequency	Over Frequency
Parameter	Frequency(Hz)	Frequency(Hz)
Output Voltage	Un	Un
Set value	46.91	52.10
Measured trip	46.90	52.10
value	46.90	52.10
	46.90	52.10
	46.90	52.10
	46.90	52.10
	46.90	52.10

TRF No.: IEC61727A+IEC62116A Page 25 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

Parameter		Time [ms]		Time [ms]
Limit		<= 100ms		<= 100ms
Disconnection	49.40H	70	50.60	64
time	z to 48.80H	74	Hz to 51.20	62
	Z	74	Hz	68
		68		66
		70		66
		77		64
Reconnection time(Sec)	at least 120s	223s	at least 120s	221s

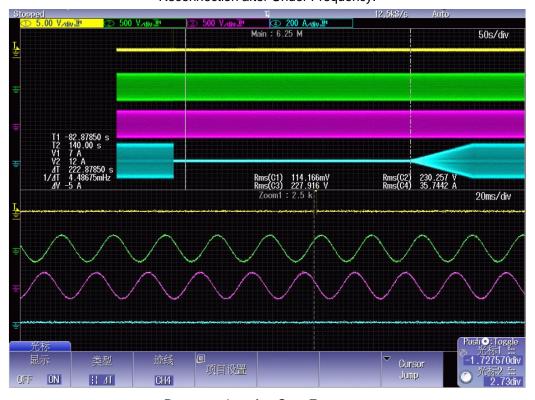

Note:

Set all other parameter to the normal operating conditions for inverter.

Suddenly increase testing voltage to overfrequency trip setting -/+0.1 Hz and maintain this value until the inverter stop energize. All the time it takes to cut off the power must be within 0.1s.


Response to Utility Recovery Test:

The test methods shall be in accordance with IEEE 1547.1-2005 clause 5.10 and evaluation criteria refer to clause 3.2.4 in this regulation.



		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

Reconnection after Under Frequency:

Reconnection after Over Frequency

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

Note:

Yellow, Purple, Red for L1. L2, L3 Voltage; Green, Turquoise, Brown for L1. L2, L3 Current; Blue for Trigger signal.

IEC 62116			to the World
Clause	Requirement – Test	Result - Remark	Verdict

Clause	Test	Result
	Type test:	
6.1	Islanding protection according table 6 - Load imbalance (real, reactive load)	Р
	for test condition A (EUT ouput = 100%)	
6.1	Load imbalance (reactive load) for test condition B (EUT output = $50 \% -$	Р
	66 %)	
6.1	Load imbalance (reactive load) for test condition C (EUT output = 25 % -	Р
	33 %)	

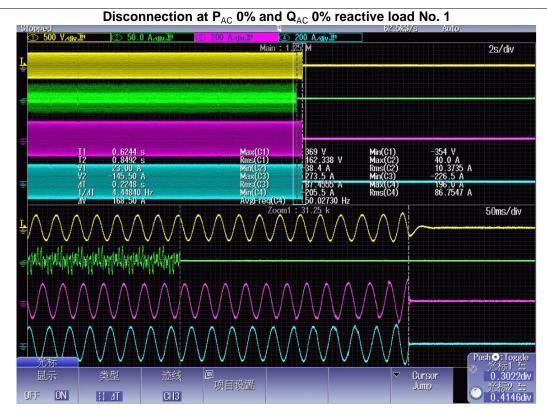
6.1	TABLE: Islanding protection (EUT output = 100%)									
Test conditions				Frequency: 50+/-0.1Hz UN=220+/-3Vac Distortion factor of chokes < 2% Quality =1						
Di	sconnection li	ITIIL				s for MEA				
No	1) PEUT (% of EUT rating)	Reactive load (% o QL in 6.1.d) 1)	f PAC (% of	3) QAC (% of nominal)	Run on Time (ms)	PEUT (kW per phase)	Actual Qf	V (V)	Remarks4)	
1	100	100	0	0	225	50.074	0.997	804	Test A at BL	
2	100	100	-5	-5	152	50.074	1.023	804	Test A at IB	
3	100	100	-5	0	154	50.074	1.049	804	Test A at IB	
4	100	100	-5	+5	120	50.074	1.075	804	Test A at IB	
5	100	100	0	-5	124	50.074	0.971	804	Test A at IB	
6	100	100	0	+5	166	50.074	1.021	804	Test A at IB	
7	100	100	+5	-5	143	50.074	0.925	804	Test A at IB	
8	100	100	+5	0	137	50.074	0.949	804	Test A at IB	
9	100	100	+5	+5	164	50.074	0.973	804	Test A at IB	
Parameter at 0% per phase			L= 16	L= 16.02 mH		R= 6.45Ω		C= 103.00 μF		
IAC fundamental current at balance condition			L1:10)1 mA		L2: 131 mA		L3: 298 mA		

TRF No.: IEC61727A+IEC62116A Page 29 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 62116	Access to the	e World
Clause	Requirement – Test		Result - Remark	Verdict

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power


- 1) PEUT: ÉUT output power
- 2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the $0\,\%$ test condition value.
- 3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 4) BL: Balance condition, IB: Imbalance condition.

Condition A:

EUT output power PEUT = Maximum5)

EUT input voltage 6) = 100% of rated input voltage range

- 5) Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.
- 6) Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range $=X + 0.9 \times (Y X)$. Y shall not exceed 0.8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

Attention:

For Thailand only picture with all three current phases L1. L2 and L3 are accepted

All relays are direct coupled and open directly by receiving the islanding signal from the controller.

Note:

CH1. CH2. CH3: L1. L2. L3 current of EUT(8A/div); CH4. CH5. CH6: L1. L2. L3 IAC(2A/div).

TRF No.: IEC61727A+IEC62116A Page 30 of 36 Report1 No.: ES190702002P Ver. 1.0

IEC 62116

Clause Requirement – Test Result - Remark Verdict

6.1 TABLE: Islanding protection (EUT output = 66%)								Р	
	Test condit	ions		Frequency: 50+/-0.1Hz UN=220+/-3Vac Distortion factor of chokes < 2% Quality =1					
Dis	sconnection li	mit			2	s for MEA			
No	1) PEUT (% of EUT rating)	Reactive load (% QL in 6.1.d)	of PAC (% of	3) QAC (% of nominal)	Run on Time (ms)	PEUT (kW per phase)	Actual Qf	V (V)	Remarks4)
1	66	66	0	-5	192	33.085	0.977	654	Test B at IB
2	66	66	0	-4	120	33.085	0.982	654	Test B at IB
3	66	66	0	-3	127	33.085	0.987	654	Test B at IB
4	66	66	0	-2	104	33.085	0.992	654	Test B at IB
5	66	66	0	-1	127	33.085	0.997	654	Test B at IB
6	66	66	0	0	113	33.085	1.002	654	Test B at BL
7	66	66	0	1	113	33.085	1.007	654	Test B at IB
8	66	66	0	2	92	33.085	1.012	654	Test B at IB
9	66	66	0	3	124	33.085	1.017	654	Test B at IB
10	66	66	0	4	95	33.085	1.022	654	Test B at IB
11	66	66	0	5	106	33.085	1.027	654	Test B at IB
Para	meter at 0% p	er phase	L= 76	6.31 mH	F	R= 27.45 Ω			06.43 μF
IAC fundamental current at balance condition		L1:	19 mA		L2: 36 mA		L3: 45mA		

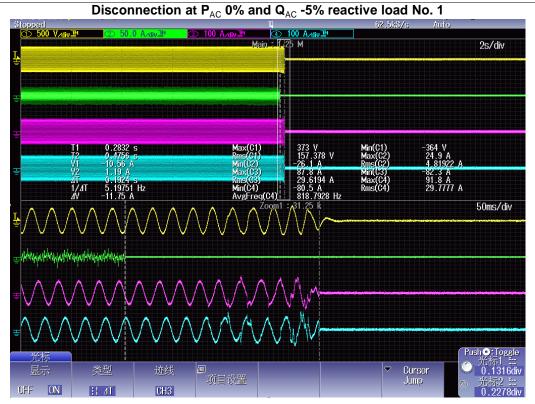
Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

- 1) PEUT: EUT output power
- 2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 4) BL: Balance condition, IB: Imbalance condition.

Condition A:

EUT output power PEUT = Maximum 5)


EUT input voltage 6) = 66% of rated input voltage range

- 5) Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.
- 6) Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range $=X + 0.9 \times (Y X)$. Y shall not exceed 0.8 x EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

TRF No.: IEC61727A+IEC62116A Page 31 of 36 Report1 No.: ES190702002P Ver. 1.0

				Access to the	e World
	IEC 6	52116			
Clause	Requirement – Test	I	Result - Remark		Verdict

Attention:

For Thailand only picture with all three current phases L1. L2 and L3 are accepted

All relays are direct coupled and open directly by receiving the islanding signal from the controller.

Note

CH1. CH2. CH3: L1. L2. L3 current of EUT(8A/div); CH4. CH5. CH6: L1. L2. L3 I_{AC}(0.8A/div).

6.1 TABLE: Islanding protection (EUT output = 33%)									Р
					•	ncy: 50+/-0	.1Hz		
					UN=220				
	Test conditi	ons		Dis		ctor of chok	es < 2%		
						uality =1			
Dis	connection lin	nit			28	for MEA			
	1)	Reactive	2)	3)					
	PEUT	load (% of	PAC	QAC [´]	Run on	PEUT	Actual	V	
No	(% of EUT	QL in	(% of	(% of	Time	(kW per	Qf	(V)	Remarks4)
	rating)	6.1.d) 1)	nominal)	nominal)	(ms)	phase)			
1	33	33	0	-5	194	16.652	0.971	498	Test C at IB
2	33	33	0	-4	122	16.652	0.986	498	Test C at IB
3	33	33	0	-3	124	16.652	0.986	498	Test C at IB
4	33	33	0	-2	120	16.652	0.991	498	Test C at IB
5	33	33	0	-1	122	16.652	0.996	498	Test C at IB
6	33	33	0	0	114	16.652	1.001	498	Test C at BL

TRF No.: IEC61727A+IEC62116A Page 32 of 36 Report1 No.: ES190702002P Ver. 1.0

		IEC 62116		Access to the	, worrd
Clause	Requirement – Test		Result - Remark		Verdict

7	33	33	0	1	115	16.652	1.006	498	Test C at IB
8	33	33	0	2	137	16.652	1.011	498	Test C at IB
9	33	33	0	3	124	16.652	1.016	498	Test C at IB
10	33	33	0	4	122	16.652	1.021	498	Test C at IB
11	33	33	0	5	110	16.652	1.026	498	Test C at IB

Parameter at 0% per phase	L= 52.36 mH	R= 16.45 Ω	C= 101.47 μF
IAC fundamental current at balance condition	L1: 82mA	L2: 92mA	L3: 143mA

Note:

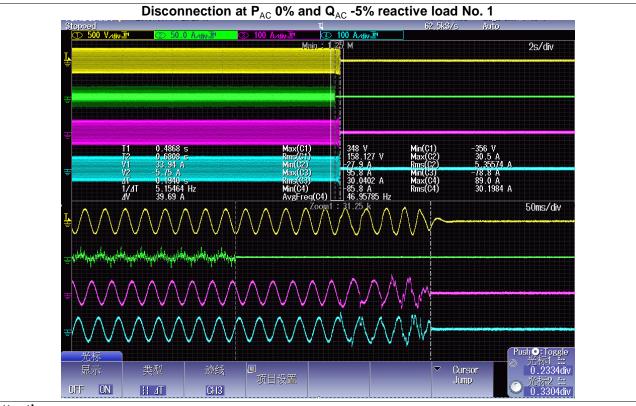
RLC is adjusted to min. +/-1% of the inverter rated output power

- 1) PEUT: EUT output power
- 2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 4) BL: Balance condition, IB: Imbalance condition.

Condition A:

EUT output power PEUT = Maximum 5)

EUT input voltage 6) = 33% of rated input voltage range


- 5) Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.
- 6) Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range $=X + 0.9 \times (Y X)$. Y shall not exceed 0.8 x EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

TRF No.: IEC61727A+IEC62116A Page 33 of 36 Report1 No.: ES190702002P Ver. 1.0

IEC 62116

Clause Requirement – Test Result - Remark Verdict

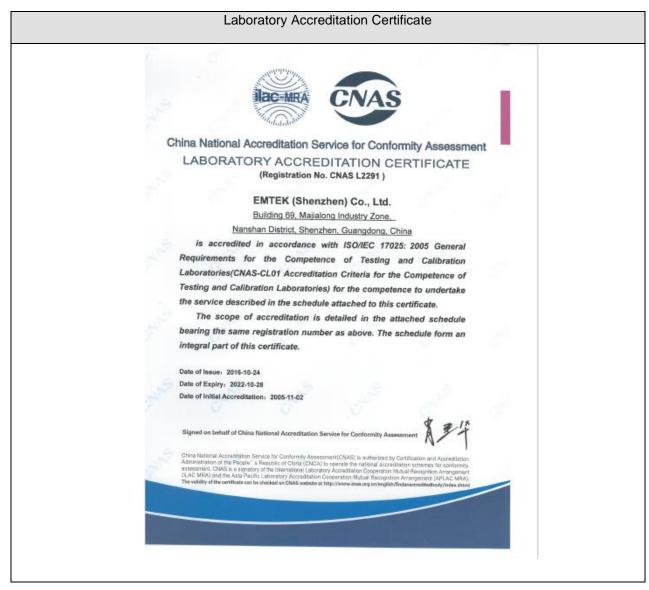
Attention:

For Thailand only picture with all three current phases L1. L2 and L3 are accepted All relays are direct coupled and open directly by receiving the islanding signal from the controller.

Note

CH1. CH2. CH3: L1. L2. L3 current of EUT(2A/div); CH4. CH5. CH6: L1. L2. L3 I_{AC}(0.8A/div).

TRF No.: IEC61727A+IEC62116A Page 34 of 36 Report1 No.: ES190702002P Ver. 1.0



Pictures

Equipment of test

Equipment name	Trade name	Model	S/N	Cal. Due. Date
Power Analyzer	YOKOGAVA	WT3000	EP-011	2020/09/23
Programmable DC	GROWATT	DC1000	RD.02.100	
Programmable AC	GROWATT	AC1000	RD.02.101	
Programmable DC	Kewell	TVS-630kW	EP-027	
Programmable AC	APC	AFG-S-33800	EP-026	
Programmable RLC	Qunling	ACLT-38160H	EP-028	
Digital oscilloscope	YOKOGAVA	DL850	EP-001	2020/09/04
Differential probe	CYBERTEK	VP5200	EP-003	2020/09/00
Current probe	YOKOGAVA	CT-1000	EP-012	2020/09/23
Current probe	YOKOGAVA	CT-1000	EP-013	2020/09/23
Current probe	YOKOGAVA	CT-1000	EP-014	2020/09/23
Three phase impedance	Teseq	CCN 1000-3	EE206-1	2020/09/23
Signal conditioning Unit	Teseq/Germany	INA2197/37A	EE206-2	N/A
Three phase impedance	Teseq/Germany	INA 2196/75A	EE206-3	N/A

