

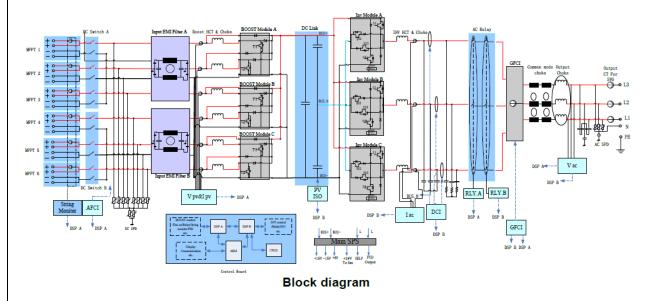
	TEST REPORT IEC 61727: 2004) systems - Characteristics of the utility interface IEC 62116: 2014 anding prevention measures for utility-interconnected photovoltaic inverters
Report Reference No	: ES190702001P
Compiled by (name + signature)	: Double Lee Powble Lee
Approved by (name + signature)	: Paladin Hu
Date of issue	: July 30. 2019
Total number of pages	37 pages
Testing Laboratory name	EMTEK(SHENZHEN) CO., LTD.
Address	Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China
Testing location/ address	Same as above
Applicant's name	: Shenzhen ATESS Power Technology Co.,Ltd
Address	1st Floor of Building 3 at Sector B and 3rd Floor of Building 9, Henglong Industrial Park, No.4 Industrial Zone, Shuitian Community, Shiyan Street, Baoan District, Shenzhen
Test specification:	
Standard	IEC 61727: 2004
	IEC 62116: 2014
Test procedure	IEC report
Non-standard test method:	N/A
Test Report Form No	IEC61727A
	IEC62116A
Test Report Form(s) Originator	EMTEK
Master TRF	Dated 2013-06
Test item description	Hybrid Power systems
Trade Mark	
Manufacturer	: Shenzhen ATESS Power Technology Co.,Ltd
Address	1st Floor of Building 3 at Sector B and 3rd Floor of Building 9, Henglong Industrial Park, No.4 Industrial Zone, Shuitian Community, Shiyan Street, Baoan District, Shenzhen
Model/Type reference	HPS120
Firmware Version	TI1.0
Ratings	See the rating label.

Possible test case verdicts:	
- test case does not apply to the test object	N/A(Not applicable)
- test object does meet the requirement	P (Pass)
- test object does not meet the requirement	F (Fail)
Testing	
Date of receipt of test item	July 08. 2019
Date (s) of performance of tests	July 08. 2019 to July 30. 2019
General remarks:	
"(see Attachment #)" refers to additional information ap	opended to the report.

"(see appended table)" refers to a table appended to the report. The tests results presented in this report relate only to the object tested.

This report shall not be reproduced except in full without the written approval of the testing laboratory.

List of test equipment must be kept on file and available for review.


Additional test data and/or information provided in the attachments to this report.

Throughout this report a \Box comma / \boxtimes point is used as the decimal separator.

The IEC61727 does not provide any limits of accuracy for the utility voltage and frequency measurement of the PV-system. Therefore the values for tolerances given in the grid-connected inverter regulations of the Metropolitan Electricity Authority (MEA 2013).

General product information:

The Solar Inverter converts DC voltage into AC voltage. The input and output are protected by varistors to earth. The unit is providing EMC filtering at the input and output towards mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and a relay in series. This assures that the opening of the output circuit will also operate in case of one error.

The internal control is redundant built. It consists of Microcontroller Controller A (U11) and Controller B (U5). The Controller A (U11) control the relays (RY4-RY6)by switching signals; measures the PV voltage, PV current and BUS voltage, measures grid voltage, frequency, AC current with injected DC and the array insulation resistance to ground. In addition it tests the current sensors and the RCMU circuit before each start up.

The Controller B (U5) is using for measuring the grid voltage, AC current, grid frequency and residual current, also can switch off the relays (RY1-RY3) independently, and communicate with Controller A (U11) each other.

The current is measured by a current sensor. The AC current signal and the injected DC current signal are sent to the Master DSP. The Master DSP tests and calibrated before each start up all current sensors.

The unit provided two relays in series in all three line conductors. When single fault applied to one relay, alarm an error code in display panel, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before each start up. Both controllers can open the relays.

- 1) It's intended for professional incorporation into PV systems, and it is assessed on a component test basis;
- 2) The enclosure assembly was secured by screws;
- 3) The inverter is intended to be mounted on the concrete wall with screws and expansion tube;
- 4) The PCE shall be used at specified ambient temperature range: -25 $^{\circ}$ C ~ +60 $^{\circ}$ C.

Copy of marking plate:

ATESS Hybrid Power Systems						
Model		HPS120				
PV MPPT	Range	480-820V				
PV Max.Ir	nput Current	300A				
Battery M	lin. Voltage	350V				
Nominal	AC Voltage	400 Vac				
Nominal /	AC Current	173A				
	ating Frequenc	y 50 Hz				
AC Nomi	nal power	120KVA				
Power Fa	ctor 0.9lagg	ging0.9leading				
Ingress P	rotection	IP20				
Commun	ication Port	RS485				
Operating	g Temp.Range	-25 to +55 °C				
DATE OF N	IADE					
S/N:	940.7	270000400				
C		WW.ATESSP.COM MADE IN CHINA				

Interface protection settings with deviations according the grid-connected inverter regulations of the Metropolitan Electricity Authority (MEA) (Thailand MEA)

Parameter	Max. clearance time*	Trip setting			
Over voltage (level 2)	0.05s	230V +12% (311V)**			
Over voltage (level 1)	2.0s	230V +4.3% (240V)			
Under voltage (level 1)	2.0s	230V -13% (200V)			
Under voltage (level 2)	0.1s 230V -50% (115V)**				
Over frequency	0.1s	50Hz + 2% (52.0Hz)			
Under frequency	0.1s	50Hz -2% (47.0Hz)			
Reconnection time		At least 120s			
Permanent DC-injection	0.5% of rated inverter output current				
Loss of main IEC 62116:2014	Inverter shall detect and disconnect within 2s				
		curring and the inverter ceasing to			

^a Trip time refers to the time between the abnormal condition occurring and the inverter ceasing to energize the utility line. The PV system control circuits shall actually remain connected to the utility to allow sensing of utility electrical conditions for use by the "reconnect" feature.

** The inverter can be adjusted for overvoltage trip setting up to 311V.

Verdict

Requirement – Test

Clause

IEC 61727

Result - Remark

<

SECTIO	N 4: Utility compatibility		
4	 General The quality of power provided by the PV system for the on-site AC loads and for power delivered to the utility is governed by practices and standards on voltage, flicker, frequency, harmonics and power factor. Deviation from these standards represents out-of-bounds conditions and may require the PV system to sense the deviation and properly disconnect from the utility system. All power quality parameters (voltage, flicker, frequency, harmonics, and power factor) must be measured at the utility interface/ point of common coupling unless otherwise specified. 	Noticed	Ρ
4.1	Voltage, current and frequency The PV system AC voltage, current and frequency shall be compatible with the utility system.	Derived from tests	P
4.2	Normal voltage operating range Utility-interconnected PV systems do not normally regulate voltage; they inject current into the utility. Therefore, the voltage operating range for PV inverters is selected as a protection function that responds to abnormal utility conditions, not as a voltage regulation function.	Derived from tests	Ρ
4.3	Flicker The operation of the PV system should not cause voltage flicker in excess of limits stated in the relevant sections of IEC 61000-3-3 for systems less than 16 A or IEC 61000-3-5 for systems with current of 16 A and above.	See table 4.3	P
4.4	DC injection The PV system shall not inject DC current greater than 0.5 % of the rated inverter output current, into the utility AC interface under any operating condition.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013)	P
4.5	Normal frequency operating range The PV system shall operate in synchronism with the utility system, and within the frequency trip limits defined in MEA.	See table 4.4 The following deviations were used: a) Metropolitan Electricity	P

IEC 61727
Clause Requirement – Test Result - Remark Verdict

		Authority (MEA 2013)	
		See table 4.5 and 5.2.2	
4.6	 Harmonics and waveform distortion Low levels of current and voltage harmonics are desirable; the higher harmonic levels increase the potential for adverse effects on connected equipment. Acceptable levels of harmonic voltage and current depend upon distribution system characteristics, type of service, connected loads/apparatus, and established utility practice. The PV system output should have low current-distortion levels to ensure that no adverse effects are caused to other equipment connected to the utility system. Total harmonic current distortion shall be less than 5 % at rated inverter output. Each individual harmonic shall be limited to the percentages listed in clause 3.1.1 of MEA. 	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See tables 4.6 (1) and 4.6 (2)	Ρ
4.7	Power factor The power factor base on products. N 5: Personnel safety and equipment protection		Р
5	General This Clause provides information and considerations for the safe and proper operation of the utility-connected PV systems.	Noticed	P
5.1	 Loss of utility voltage To prevent islanding, a utility connected PV system shall cease to energize the utility system from a de-energized distribution line irrespective of connected loads or other generators within specified time limits. A utility distribution line can become de-energized for several reasons. For example, a substation breaker opening due to fault conditions or the distribution line switched out during maintenance. If inverters (single or multiple) have DC SELV input and have accumulated power below 1 kW then no mechanical disconnect (relay) is required. 	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013)	Ρ
5.2	Over/under voltage and frequency Abnormal conditions can arise on the utility	The following deviations were used:	P

IEC 61727						
Clause	Requirement – Test	Result - Remark Verdi				
	 system that requires a response from the connected photovoltaic system. This response is to ensure the safety of utility maintenance personnel and the general public, as well as to avoid damage to connected equipment, including the photovoltaic system. The abnormal utility conditions of concern are voltage and frequency excursions above or below the values stated in this Clause, and the complete disconnection of the utility, presenting the potential for a distributed resource island. 	a) Metropolitan Electricity Authority (MEA 2013) See table 5.2.1 and 5.2.2				
5.2.1	Over/under voltage	The following deviations were	Р			
	 When the interface voltage deviates outside the conditions specified in Table 2, the photovoltaic system shall cease to energize the utility distribution system. This applies to any phase of a multiphase system. All discussions regarding system voltage refer to the local nominal voltage. The system shall sense abnormal voltage and respond. The following conditions should be met, with voltages in RMS and measured at the point of utility connection. 	used: a) Metropolitan Electricity Authority (MEA 2013) See table 5.2.1				
	(see clause 5.2.1 Table 2 – Response to abnormal voltages)					
	The purpose of the allowed time delay is to ride through short-term disturbances to avoid excessive nuisance tripping. The unit does not have to cease to energize if the voltage returns to the normal utility continuous operation condition within the specified trip time.					
5.2.2	Over/under frequency	The following deviations were	Р			
	When the utility frequency deviates outside the specified conditions the photovoltaic system shall cease to energize the utility line. The unit does not have to cease to energize if the frequency returns to the normal utility continuous operation condition within the specified trip time.	used: a) Metropolitan Electricity Authority (MEA 2013)				
	When the utility frequency is outside the range of	See table 5.2.2				
	± 1 Hz, the system shall cease to energize the utility line within 0.1 s. The purpose of the allowed range and time delay is to allow continued operation for short-term disturbances and to avoid excessive nuisance tripping in weak-utility system conditions.					
5.3	Islanding protection	The following deviations were	Р			
	The PV system must cease to energize the utility	used:				

	IEC 61727		
Clause	Requirement – Test	Result - Remark	Verdict
	line within 0.3 s of loss of utility.	a) Metropolitan Electricity Authority (MEA 2013)	
5.4	Response to utility recovery Following an out-of-range utility condition that has caused the photovoltaic system to cease energizing, the photovoltaic system shall not energize the utility line for 120 s after the utility service voltage and frequency have recovered to within the specified ranges.	The following deviations were used: a) Metropolitan Electricity Authority (MEA 2013) See table 5.2 (1) and 5.2 (2)	P
5.5	Earthing The utility interface equipment shall be earthed /grounded in accordance with IEC 60364-7-712.	Stated in the manual.	P
5.6	Short circuit protection The photovoltaic system shall have short -circuit protection in accordance with IEC 60364-7-712.	Stated in the manual.	Р
5.7	Isolation and switching A method of isolation and switching shall be provided in accordance with IEC 60364-7-712.	Stated in the manual.	Р

Verdict

IEC 61727 Requirement – Test Result - Remark Clause

Clause	Test	Result
	Response to protection operation - fault condition tests (according VDE0126-	
1	1-1:2006)	Р
4	Type test:	
4.3	Voltage Fluctuations and Flicker	Р
4.4	Monitoring of DC-Injection	Р
4.5	Normal frequency operating range (see 5.2.2 below)	Р
4.6	Harmonics and waveform distortion	Р
4.7	Power factor	Р
5.2.1	Voltage monitoring	Р
5.2.2	Frequency monitoring	Р

Verdict

IEC 61727

Clause

Requirement – Test

Result - Remark

1. Response to protection operation - fault condition tests							Р	
		Ambient temperature (oC) : 24,9 C					9 C	—
No.	Component no	. Fault	Test voltage (V)	Test time	Fuse no.	Fuse current (A)	Resu	ılt
1	PV input	Polarity reverse	1000Vdc / 230Vac	10 minutes	/	/	Inverter alarm, no hazard.	No output ,
2	AC output L-L	S-C	1000Vdc / 230Vac	10 minutes	/	/	Breaker is brok output, no haza	
3	AC output L-N	S-C	1000Vdc / 230Vac	10 minutes	/	/	Breaker is brok output, no haza	-
4	AC output	Phase sequen ce errors	1000Vdc / 230Vac	10 minutes	/	/	Inverter work n	ormally.
5	VCC of main CPL	J O-C	1000Vdc / 230Vac	10 minutes	/	/	Error message communication	
6	VCC of secondary	y O-C	1000Vdc / 230Vac	10 minutes	/	/	Error message communication	
7	Communication o main CPU and secondary CPU	f O-C	1000Vdc / 230Vac	10 minutes	/	/	Error message communication	
8	C1 (I/O board)	S-C	1000Vdc / 230Vac	10 minutes	/	/	Inverter discon grid immediate down, No outpu hazard.	ly and shut
9	C16 (I/O board)	S-C	1000Vdc / 230Vac	10minu tes	/	/	Inverter discon grid immediate down, No outpu hazard.	ly and shut
10	BUS R251 (I/O board)	O-C	1000Vdc / 230Vac	10minu tes	/	/	Error message Inverter discon grid immediate down.	nected from
11	D52 (I/O board)	S-C	1000Vdc / 230Vac	10minu tes	/	/	Inverter work n	ormally.
12	Q6(PIN1-PIN2) (I board)	/O S-C	1000Vdc / 230Vac	10minu tes	/	/	Inverter work n	ormally.

		IE	C 61727			
Clause	Requirement – Test			Re	sult - Remark	Verdict
					1 1	,

13	R325 (I/O board)	0-C	1000Vdc / 230Vac	10minu tes	/	/	Inverter work normally.
14	RY3A (I/O board)	S-C	1000Vdc / 230Vac	10minu tes	/	/	Inverter doesn't disconnect with grid.
15	Q1(PIN2-PIN3) (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
16	RY9A (I/O board)	0-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
17	Q28(PIN2-PIN3)(I/O board)	0-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
18	Q10(PIN2-PIN3) (I/O board)	O-C	1000Vdc / 230Vac	2 minutes	/	/	Error message: "101". Inverter disconnected from grid immediately and shut down.
19	Q10(pin1-pin2) (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter doesn't disconnect with grid.
20	TX5(PIN4- PIN8) (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shut down.
21	Q7(PIN2-PIN3) (I/O board)	0-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter work normally.
22	C151 (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
23	C152 (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
24	C294 (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.
25	C305 (I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnected from grid immediately and shutdown, No output, no hazard.

				IE	C 61727				
Clau	ise	Requirement –	Test			R	esult - Rema	ark	Verdict
26	C314	(I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnec grid immediately a shutdown, No outp hazard.	nd
27	C322((I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnec grid immediately a shutdown, No outp hazard.	nd
28	D60(I/	/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnected fro grid immediately and shutdown, No output, no hazard.	
29	Q40(F board	PIN2-PIN3) (I/O)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Error message: "101". Inverter disconnected fro grid immediately.	
30	Q40(PIN1-PIN2) (I/O board)		S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnec grid immediately.	ted from
31	1 TX5(PIN4- PIN8) (I/O board)		S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnec grid immediately a down.	
32	TX1(F (I/O b	PIN1- PIN3) oard)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter work norm	ally.
33	Q33(F (I/O b	PIN2- PIN3) oard)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter work norm	ally.
34	C335((I/O board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Inverter disconnec grid immediately a shutdown, No outp hazard.	nd
35	C257. board	6 (CTRL)	S-C	1000Vdc / 230Vac	2 minutes	/	/	PVA voltage detec Inverter disconnec grid immediately.	
36	C168	(CTRL board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Error message: "12	22".
37	C261((CTRL board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Leakage current is Inverter disconnec grid immediately a down.	ted from

				IE	C 61727				
Clau	se	Requirement –	Test			Res	sult - Rem	ark	Verdict
38	C262((CTRL board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Leakage current is Inverter disconnec grid immediately a down.	ted from
39	C151((CTRL board)	S-C	1000Vdc / 230Vac	2 minutes	/	/	Error message: "1 Inverter disconnec grid immediately a down.	ted from
40	GFCI board	power(CTRL)	O-C	1000Vdc / 230Vac	10 minutes	/	/	Error message: "1 Inverter disconnec grid immediately.	
41	C292	(power board)	S-C	1000Vdc / 230Vac	10 minutes	/	/	Inverter disconnec grid immediately a shutdown, No outp hazard.	nd
42	C299	(power board)	S-C	1000Vdc / 230Vac	10 minutes	/	/	Inverter disconnec grid immediately a shutdown, No outp hazard.	nd
Supp	lement	ary information:	S-C=sho	rt-circuited, O	-C=open-c	ircuited,	O-L=overl	oad.	

		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

4.3 Voltage fluctu	uation and flicker			Р				
the grid-connecte	d inverter regulations of the	Metropolitan Electricity Auth	ority(MEA 2013)					
Test conditions:	•	age fluctuation (expressed nd flicker as per EN 61000-		f nominal				
	Starting	Starting Stopping Running						
Limit	3.3%	3.3%	Pst = 1.0	Plt = 0.65				
Test value	*	*	*	*				
		Inverter > 16A						
Limit	mit dc% =3.3 Pst = 1.0 P							
Test value	0.0	06	0.33	0.21				

Note:

The stationary deviance of dc% is more relevant than the dynamic deviance of dmax at starting and

stopping. Mains Impedance according EN61000-3-11:Rmax = 0.24Ω; jXmax= 0.15Ω @50Hz (|Zmax| =

0.283/0.4717Ω)

Calculation of the maximum permissible grid impedance at the point of common coupling based on dc: Zmax = Zref *3.3% / dc(Pn)

The tests should be based on the limits of the EN 61000-3-11 for more than 16A.

5									
MEA Limit:		0.5% of Inom							
Output power:	33%	66%	100%						
As % of rated AC current, L1:	0.085%	0.087%	0.053%						
As % of rated AC current, L2:	0.071%	0.081%	0.092%						
As % of rated AC current, L3:	0.163%	0.157%	0.162%						
Note:			·						

Testing must be performed according to WI 10.4.-03.doc rev D. The internal temperature of the EUT must be stabilized. No temperature drift of more than 2K within 1 hour is allowed.

4.6 TABLE: Harmonic Current Limit Test

The grid-connected inverter regulations of the Metropolitan Electricity Authority(MEA 2013)

Ρ

Verdict

	C 4	707
IEC	61	121

	120 01727	
Requirement – Test		Result - F

Result - Remark

			Condition o	f test			Powe	r(kW)	
	supplying p	power to ba	lance linear	loads 33%	±5%		39.	75	Р
	supplying p	power to ba	lance linear	loads 66 %	6±5%		79.	60	Р
	supplying p	power to ba	lance linear	loads 100	%±5%		119	.95	Р
		Outp	out Current	Harmonics	Measuren	nent		Limit	Result
Order	33% 0	f rated	66% o	f rated	100% c	of rated		(% of output	
	output	current	output	current	output	current	Phase	current)	
	(A)	(%)	(A)	(%)	(A)	(%)			
1	57.450	99.623	114.807	99.544	172.270	99.578	L1	-	Р
2	0.462	0.804	0.781	0.677	1.685	0.974	L1	<1%	Р
3	0.165	0.288	0.417	0.362	0.791	0.457	L1	<4%	Р
4	0.113	0.197	0.232	0.201	0.571	0.330	L1	<1%	Р
5	0.883	1.537	2.127	1.844	4.214	2.436	L1	<4%	Р
6	0.032	0.055	0.085	0.074	0.251	0.145	L1	<1%	Р
7	0.755	1.314	1.586	1.375	2.906	1.680	L1	<4%	Р
8	0.029	0.051	0.048	0.042	0.100	0.058	L1	<1%	Р
9	0.076	0.133	0.134	0.116	0.159	0.092	L1	<4%	Р
10	0.035	0.061	0.077	0.067	0.266	0.154	L1	<1%	Р
11	0.407	0.708	1.036	0.898	2.126	1.229	L1	<2%	P
12	0.014	0.025	0.044	0.038	0.109	0.063	L1	<0.5%	P
13	0.307	0.534	0.702	0.609	1.048	0.606	L1	<2%	P
14	0.011	0.019	0.039	0.034	0.133	0.077	L1	<0.5%	P
15	0.094	0.163	0.211	0.183	0.199	0.115	L1	<2%	P
16	0.070	0.100	0.209	0.181	0.429	0.248	L1	<0.5%	P
17	0.250	0.435	0.691	0.599	0.590	0.341	L1	<1.5%	P
18	0.230	0.031	0.054	0.035	0.067	0.039	L1	<0.375%	P
10	0.325	0.565	0.373	0.323	0.410	0.237	L1	<1.5%	P
20	0.035	0.061	0.082	0.020	0.213	0.123	L1	<0.375%	P
20	0.037	0.064	0.123	0.107	0.210	0.123	L1	<1.5%	P
22	0.037	0.004	0.024	0.021	0.221	0.038	L1	<0.375%	P
22	0.030	0.023	0.024	0.163	0.896	0.518	L1	<0.6%	P
23	0.003	0.002	0.044	0.038	0.087	0.050	L1	<0.15%	P
24	0.003	0.005	0.044	0.038	0.521	0.301	L1	<0.6%	P
26	0.049	0.000	0.068	0.059	0.154	0.089	L1	<0.15%	P
20	0.005	0.023	0.008	0.039	0.028	0.089	L1	<0.6%	P
28	0.003	0.008	0.013	0.011	0.028	0.010	L1	<0.0%	P
20	0.002	0.003	0.018	0.014	0.043	0.025	L1 L1	<0.15%	P P
30	0.007	0.012	0.043	0.009	0.200		L1	<0.0%	P
						0.015		<0.15%	P P
31 32	0.016	0.027	0.067	0.058	0.211	0.122	L1		
	0.006	0.010	0.020	0.017	0.045	0.026	L1	<0.15%	P P
33	0.001	0.002	0.007	0.006	0.052	0.030	L1	<0.6%	
34	0.001	0.002	0.008	0.007	0.028	0.016	L1	<0.15%	P P
35	0.003	0.006	0.030	0.026	0.145	0.084	L1	<0.3%	
36	0.000	0.000	0.006	0.005	0.014	0.008	L1	<0.075%	P
37	0.006	0.011	0.062	0.054	0.142	0.082	L1	<0.3%	P
38	0.002	0.003	0.015	0.013	0.055	0.032	L1	<0.075%	P
39	0.001	0.002	0.013	0.011	0.042	0.024	L1	< 0.3%	P
40	0.003	0.006	0.016	0.014	0.062	0.036	L1	<0.075%	Р
THDi		2.713		2.325		2.211	L1	≤ 5%	P
Suppler	mentary info	rmation:							

Clause

IEC 61727

Requirement – Test

Clause

Result - Remark

Verdict

4.6	TABLE: Ha	armonic Cur	rent Limit To	est					Р
	The grid-co	onnected inv	verter regula	tions of the	Metropolit	an Electri	city Authority(N	/IEA 2013)	
		С	ondition of t	test			Power (kV	V)	
	supplying p	power to ba	lance linear	loads 33%	±5%		39.75		Р
	supplying p	power to ba	lance linear	loads 66 %	6 ± 5%		79.60		Р
	supplying p	power to ba	lance linear	loads 100	%±5%		119.95		Р
			out Current			nent		Limit	Result
Order	33% of	f rated	66% 0	f rated	100% c	f rated		(% of outp	ut
	output	current	output	current	output	current	Phase	current)	
	(A)	(%)	(A)	(%)	(A)	(%)			
1	57.393	99.427	114.782	99.471	172.102	99.426	L2		Р
2	0.564	0.982	1.025	0.889	1.709	0.988	L2	<1%	Р
3	0.247	0.430	0.482	0.418	1.125	0.650	L2	<4%	Р
4	0.072	0.125	0.194	0.168	0.370	0.214	L2	<1%	Р
5	1.202	2.092	1.992	1.727	4.818	2.785	L2	<4%	Р
6	0.025	0.043	0.103	0.089	0.182	0.105	L2	<1%	Р
7	0.719	1.251	1.372	1.190	2.725	1.575	L2	<4%	Р
8	0.024	0.042	0.059	0.051	0.100	0.058	L2	<1%	Р
9	0.064	0.111	0.142	0.123	0.273	0.158	L2	<4%	Р
10	0.051	0.088	0.076	0.066	0.261	0.151	L2	<1%	Р
11	0.439	0.764	0.592	0.513	2.005	1.159	L2	<2%	Р
12	0.020	0.035	0.032	0.028	0.085	0.049	L2	<0.5%	Р
13	0.349	0.607	0.563	0.488	1.182	0.683	L2	<2%	Р
14	0.052	0.090	0.088	0.076	0.221	0.128	L2	<0.5%	Р
15	0.145	0.253	0.319	0.277	0.246	0.142	L2	<2%	Р
16	0.111	0.194	0.153	0.133	0.573	0.331	L2	<0.5%	Р
17	0.417	0.726	0.819	0.710	0.794	0.459	L2	<1.5%	Р
18	0.027	0.047	0.051	0.044	0.092	0.053	L2	<0.375%	
19	0.204	0.355	0.490	0.425	0.734	0.424	L2	<1.5%	Р
20	0.044	0.076	0.072	0.062	0.270	0.156	L2	<0.375%	Р
21	0.047	0.082	0.103	0.089	0.242	0.140	L2	<1.5%	Р
22	0.036	0.062	0.042	0.036	0.073	0.042	L2	<0.375%	P
23	0.114	0.198	0.158	0.137	0.756	0.437	L2	<0.6%	P
24	0.005	0.009	0.020	0.017	0.071	0.041	 L2	<0.15%	P
25	0.064	0.112	0.057	0.049	0.465	0.269	 L2	<0.6%	P
26	0.014	0.024	0.008	0.007	0.088	0.051	L2	<0.15%	P
27	0.008	0.014	0.016	0.014	0.038	0.022	L2	<0.6%	P
28	0.004	0.007	0.002	0.002	0.040	0.023	 L2	<0.15%	P
29	0.025	0.043	0.024	0.021	0.216	0.125	L2	<0.6%	P
30	0.004	0.007	0.001	0.001	0.029	0.017	L2	<0.15%	P
31	0.039	0.068	0.031	0.027	0.223	0.129	 L2	<0.6%	P
32	0.009	0.016	0.012	0.010	0.055	0.032	 L2	<0.15%	P
33	0.002	0.004	0.000	0.000	0.029	0.017	 L2	<0.6%	P
34	0.003	0.005	0.002	0.002	0.033	0.019	L2	<0.15%	P
35	0.009	0.015	0.001	0.001	0.097	0.056	 L2	<0.3%	P
36	0.003	0.006	0.003	0.003	0.017	0.010	L2	< 0.075%	
37	0.028	0.049	0.008	0.007	0.168	0.097	 L2	<0.3%	P
38	0.007	0.013	0.000	0.001	0.059	0.034	L2	< 0.075%	
39	0.007	0.012	0.009	0.008	0.021	0.012	 L2	<0.3%	P
~~		0.012	0.001	0.000	0.021	0.050	L2	< 0.075%	

							E	Access to the	
				IEC	61727				
Clause	Requ	uirement – 1	Fest			Resul	t - Remark	,	Verdict
								1	
THDi		2.472		2.449		2.125	L2	≤ 5%	P

THDi---2.472Supplementary information:

4.6	TABLE: Ha	armonic Cur	rent Limit Te	est					Р
	The grid-co	onnected inv	verter regula	itions of the	Metropolit	an Electric	city Authority(MEA 2013)	
		C	Condition of	test			Power	(kW)	
	supplying p	power to ba	lance linear	loads 33%	±5%		39.7	7 5	Р
	supplying p	power to ba	lance linear	loads 66 %	6±5%		79.6	60	Р
	supplying p	power to ba	lance linear	loads 100	%±5%		119.9	95	Р
			out Current	Harmonics				Limit	Resu
Order	33% of	f rated	66% of	f rated	100% o	of rated		(% of output	
	output		output		output o		Phase	current)	
	(A)	(%)	(A)	(%)	(A)	(%)			
1	57.653	99.926	115.286	99.952	172.902	99.975	L3	10/	P
2	0.200	0.677	1.123	0.974	1.391	0.804	L3	<1%	P
3	0.108	0.362	0.527	0.457	0.498	0.288	L3	<4%	P
4	0.060	0.201	0.381	0.330	0.341	0.197	L3	<1%	P
5	0.544	1.844	2.809	2.436	2.659	1.537	L3	<4%	P
6	0.023	0.074	0.167	0.145	0.095	0.055	L3	<1%	P
7	0.406	1.375	1.938	1.680	2.273	1.314	L3	<4%	P
8	0.013	0.042	0.067	0.058	0.088	0.051	L3	<1%	P
9	0.035	0.116	0.106	0.092	0.230	0.133	L3	<4%	P
10	0.021	0.067	0.178	0.154	0.106	0.061	L3	<1%	P
11	0.265	0.898	1.417	1.229	1.225	0.708	L3	<2%	P
12	0.012	0.038	0.073	0.063	0.043	0.025	L3	<0.5%	P
13	0.180	0.609	0.699	0.606	0.924	0.534	L3	<2%	P
14	0.011	0.034	0.089	0.077	0.033	0.019	L3	<0.5%	P
15	0.055	0.183	0.133	0.115	0.282	0.163	L3	<2%	P
16	0.054	0.181	0.286	0.248	0.211	0.122	L3	<0.5%	P
17	0.177	0.599	0.393	0.341	0.753	0.435	L3	<1.5%	P
18	0.015	0.047	0.045	0.039	0.054	0.031	L3	<0.375%	P
19	0.096	0.323	0.273	0.237	0.977	0.565	L3	<1.5%	P
20	0.022	0.071	0.142	0.123	0.106	0.061	L3	<0.375%	P
21	0.032	0.107	0.148	0.128	0.111	0.064	L3	<1.5%	P
22	0.007	0.021	0.044	0.038	0.050	0.029	L3	<0.375%	P P
23	0.049	0.163	0.597	0.518	0.090	0.052	L3	<0.6%	P P
24	0.012	0.038	0.058	0.050	0.009	0.005	L3 L3	<0.15%	P P
25	0.039	0.129	0.347	0.301	0.149	0.086		<0.6%	P
26 27	0.018	0.059	0.103 0.018	0.089 0.016	0.040	0.023	L3 L3	<0.15% <0.6%	P P
27	0.004	0.011	0.018	0.016	0.014	0.008	L3	<0.0%	P P
20	0.005	0.014	0.029	0.025	0.005	0.003	L3	<0.15%	P
<u>29</u> 30	0.012	0.037	0.137	0.119	0.021	0.012	L3 L3	<0.6%	P P
<u> </u>	0.004	0.009	0.017	0.015	0.005	0.003	L3 L3	<0.15%	P P
32	0.018	0.058	0.141	0.122	0.047	0.027	L3	<0.0%	P P
<u> </u>	0.006	0.017	0.030	0.026	0.017	0.010	L3 L3	<0.15%	P P
<u> </u>	0.003	0.006	0.035	0.030	0.003	0.002	L3 L3	<0.6%	P
<u>34</u> 35	0.003	0.007	0.018	0.016	0.003	0.002	L3 L3	<0.15%	P P
<u>35</u> 36	0.009	0.026	0.097	0.084	0.010	0.006	L3 L3	<0.3%	P

TRF No.: IEC61727A+IEC62116A

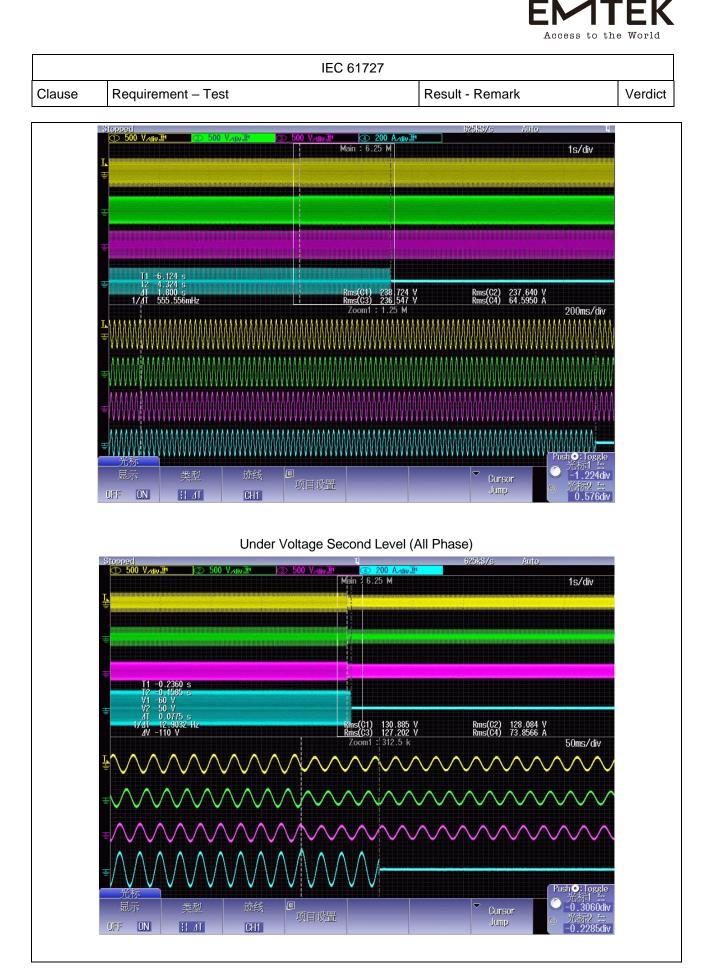
Report1 No.: ES190702001P Ver. 1.0

	IEC 61727									
Clause	e I	Requ	irement – T	est			Result - Remark			Verdict
37	0.01	17	0.054	0.095	0.082	0.019	0.011	L3	<0.3%	P
38	0.00)5	0.013	0.037	0.032	0.005	0.003	L3	<0.075%	P
39	0.00)4	0.011	0.028	0.024	0.003	0.002	L3	<0.3%	P
40	0.00)5	0.014	0.042	0.036	0.010	0.006	L3	<0.075%	Р
THDi			2.417		1.976		2.289	L3	≤ 5%	Р
Supplem	nentary	/ infor	mation:	•					•	

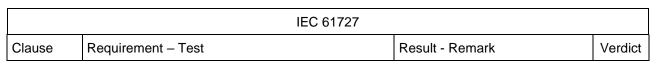
the grid-connected inverter regulations of the Metropolitan Electricity Authority(MEA 2013)							
Load (%)	Location	Measured	Lim	it			
10	L1(230Vac)	0.9927	N/A	4			
	L2(230Vac)	0.9931					
	L3(230Vac)	0.9957					
50	L1(230Vac)	0.9978	>0.9	90			
	L2(230Vac)	0.9978	>0.9	>0.90			
	L3(230Vac)	0.9991	>0.9	90			
100	L1(230Vac)	0.9992	>0.9	90			
	L2(230Vac)	0.9999	>0.9	90			
	L3(230Vac)	0.9999	>0.9	90			

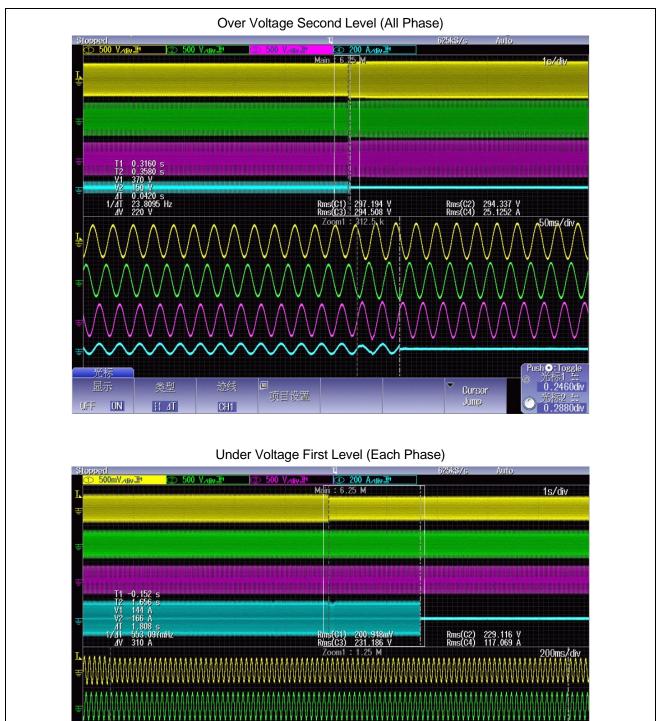
The PV system shall have a lagging power factor greater than 0.95 when the output is greater than 50% of the rated inverter output power.

5.2.1 Voltage monitoring											
1.8.4.7 Under and Over Voltage Protection(MEA: 2013)										_	
1.11.4.10 Response to utility recovery									Р		
the grid-connected inverter regulations of the Metropolitan Electricity Authority(MEA 2013)								2013)			
First Level											
Test conditions:	output power: 60.2kW Frequency: 50 Hz							2			
		Unde	er Voltag	е			Ove	r Voltage			
Parameter	/		Volta	ge (V)		/		Voltag	ge (V)		
Set Value	/		19	9V		/		24	1V		
Measured trip	Phase	All	L1	L2	L3	All	L1	L2	L3	L3	
value(V)	/	198.5 198.4 198.3 198.2			/	240.4	240.5	240.4	241.0		
		198.4	198.3	198.0	198.1		240.5	240.5	240.4	240.8	



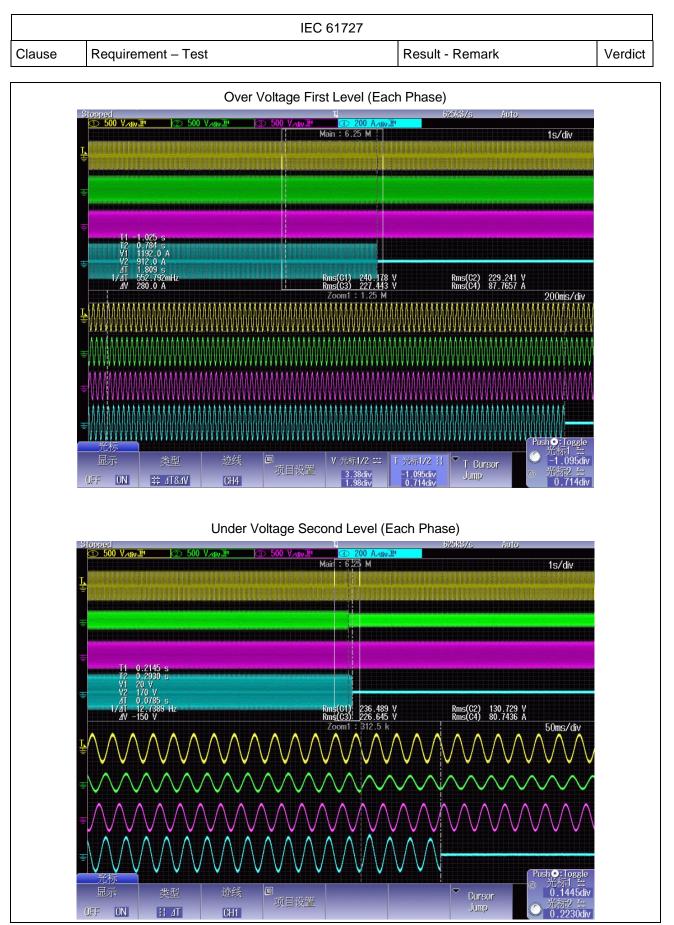
IEC 61727											
Clause	Requi	rement – Te	st				Result - R	emark		V	'erdict
			198.3	198.4	198.4	198.3		240.2	240.4	240.7	240.9
			198.5	198.7	198.4	198.6		240.3	240.5	240.6	240.3
		/	198.8	198.3	198.4	198.3	/	240.5	240.1	240.5	240.9
Paramete	Parameter /			Tim	ne(s)	•	/		Time	e(s)	•
Limit		/		≤2.0s			/		≦2	.0s	
Disconnec	tion	204V to	All	L1	L2	L3	236V to	All	L1	L2	L3
time (Se	c)	198V	1.800	1.801	1.808	1.804	242V	1.796	1.801	1.801	1.800
			1.804	1.800	1.800	1.799		1.800	1.802	1.808	1.802
			1.799	1.801	1.801	1.800		1.796	1.798	1.802	1.796
			1.796	1.798	1.797	1.792		1.800	1.802	1.796	1.798
			1.802	1.808	1.799	1.806		1.798	1.792	1.809	1.802
Reconnect time (Sec		At least 120s	220s At least 220s 120s				0s	1			
Second Level											
Test conditi	Test conditions: Output power: 61.8kW Frequency: 50 Hz										
			Under Voltage					Ove	r Voltage		
Paramete	er	/		Volta	ge (V)		/		Voltag	ge (V)	
Set Valu	е	/		11	4V		/	311V			
Measured	•	Phase	All	L1	L2	L3	Phase	All	L1	L2	L3
value(V)	/	114.5	114.5	114.6	114.4	/	309.7	309.7	309.7	309.7
			114.5	114.4	114.3	114.6		309.7	309.6	309.4	309.8
			114.4	114.3	114.2	114.6		309.6	309.8	309.5	309.4
			114.5	114.3	114.6	114.3		309.3	309.6	309.7	309.6
		/	114.5	114.7	114.7	114.8	/	309.4	309.7	309.8	309.6
Paramete	er	/			e(ms)		/		Time		
Limit		/			00ms		/		≦50		1
Disconnec time (mSe		204V to 113V	All	L1	L2	L3	236V to 311V	All	L1	L2	L3
	50)	1130	71	74	76	75	5117	28	30	29	28
			68	72	73	71		32	43	36	36
			73	64	63	70		36	38	46	40
		73	53	71	68		42	33	35	31	
			77.5	78	78.5	71		29	39	36	38
Reconnect	tion	At least		22	20s		At least		22	0s	




IEC 61727								
Clause	Requi	rement – Te	st			Result - R	emark	Verdict
								I
time (Se	ec)	120s				120s		
Note:								
The tests are according MEA: 2013. The voltage setting of EUT are set for the tests as stated to 199V, 114V for undervoltage and 241V, 311V for overvoltage.								
Response to	o utility	recovery is a	according to	the appro	priate IEEE	or IEC stand	lard test methods.	
			Under	Voltage F	irst Level (Al	,		
	topped D 500mV	<mark>∕div⊒M ② 500</mark>	Vzdiv 🏨 🔯	500 V∠div.⊒M	T	625k\$		
I					10111 - 0.20 M		1s/div	
Ę								
	Ti Ti	-0.996 s 0.808 s -30 4						
Ξ	V2 41	149 A 1.804 s 554.324mHz			Pmc(01) 202 591m	i/ Pmr	-(02) 100 007 V	
т		-179 A			Rms(C1) 202.581m Rms(C3) 201.292 M Zoom1 : 1.25 M	Rms	s(C2) 198.997 V s(C4) 117.121 A .200ms/div	
Ę			www.www	wwwww				
4								
-								
Ŧ							Push Orloggle 光标1 ==	
	光标 显示 OFF ON	类型 <i>1</i>	迹线 CH4	□ 项目设置		~	Cursor Jump ② 光标1 社 0.986div 光标2 社 0.818div	
			Over	Voltage Fi	rst Level (All	Phase)		

TRF No.: IEC61727A+IEC62116A

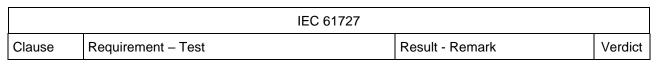
ON

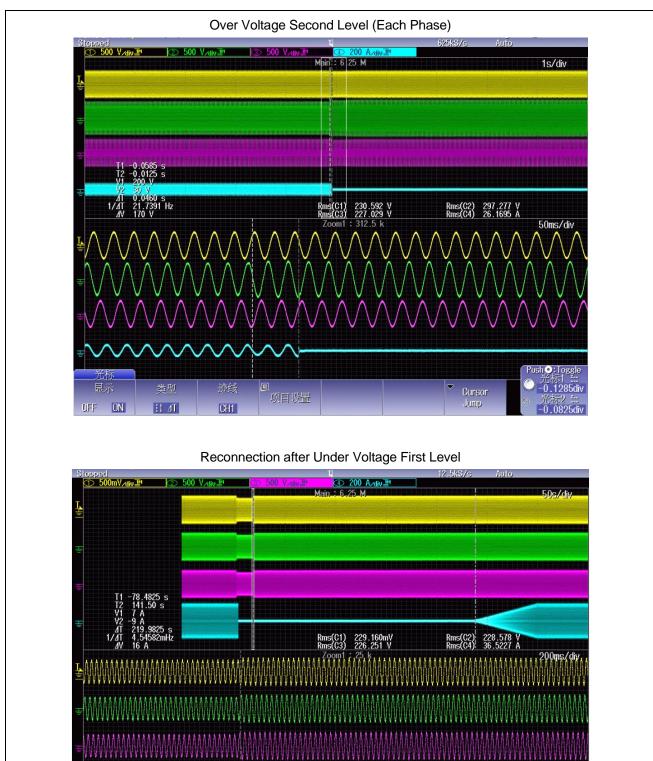

11 *4*T

CH4

Cursor Jump Push**⊙**:Toggle ◎ 光标1 హ _0.142div

1.666div

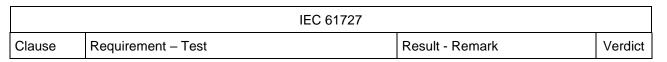


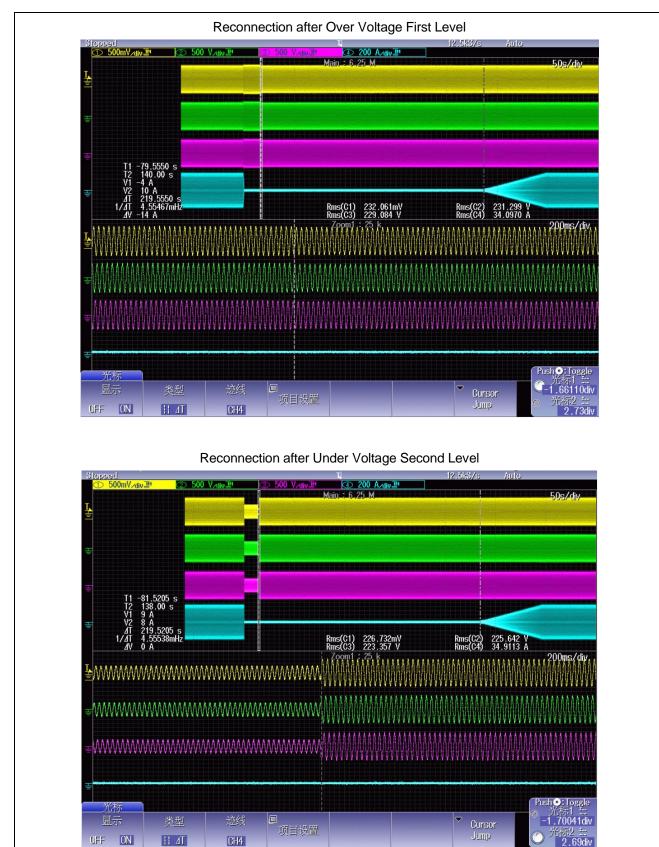


TRF No.: IEC61727A+IEC62116A

Report1 No.: ES190702001P Ver. 1.0

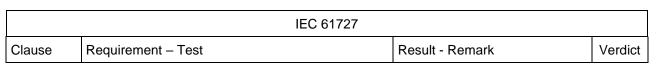
11 **4**T

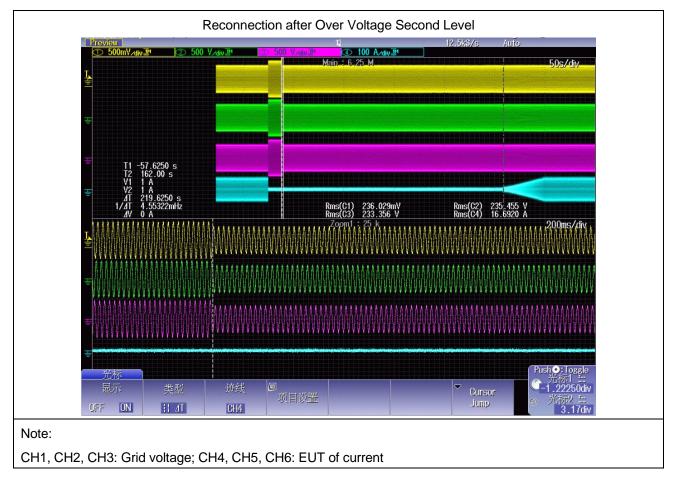

CH4


Push <u>e: Togg</u>le

.63965div

2.76div



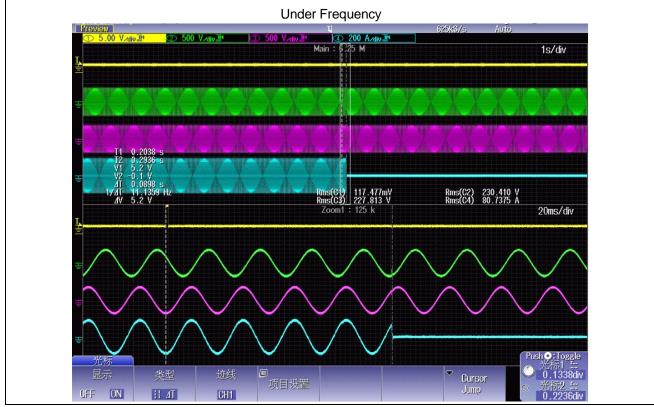


TRF No.: IEC61727A+IEC62116A

5.2.2 Frequency monitoring							
Test conditions:		Any output power level					
	Under Frequency	Over Frequency					
Parameter	Frequency(Hz)	Frequency(Hz)					
Output Voltage	Un	Un					
Set value	46.91	52.10					
Measured trip	46.91	52.09					
value	46.91	52.09					
	46.91	52.09					
	46.91	52.09					
	46.91	52.09					

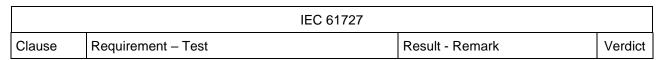
		IEC 61727		
Clause	Requirement – Test		Result - Remark	Verdict

		46.91		52.09
Parameter		Time [ms]		Time [ms]
Limit		<= 100ms		<= 100ms
Disconnection	49.40H	68	50.60	72
time	z to 48.80H z	72	Hz to 51.20	76
			74	Hz
		74		89
		72		78
		90		76
Reconnection time(Sec)	at least 120s	223s	at least 120s	221s

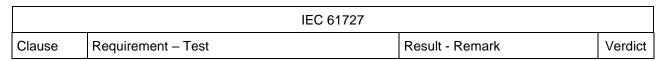

Note:

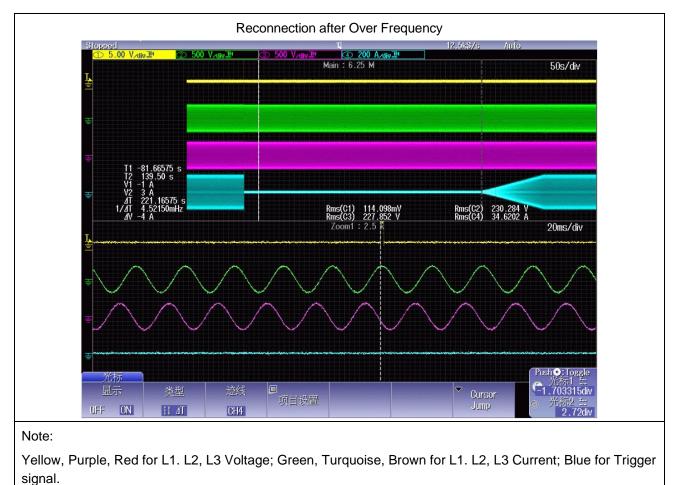
Set all other parameter to the normal operating conditions for inverter.

Suddenly increase testing voltage to over frequency trip setting -/+0.1 Hz and maintain this value until the inverter stop energize. All the time it takes to cut off the power must be within 0.1s.


Response to Utility Recovery Test:


The test methods shall be in accordance with IEEE 1547.1-2005 clause 5.10 and evaluation criteria refer to clause 3.2.4 in this regulation.


Report1 No.: ES190702001P Ver. 1.0



Ε	1	T	Ε	Κ
٨	 + ~	+ho	TATON	1.4

	621	4	C
IT()	n/ I		n

Clause Requirement – Test Result - Remark Verdict

Clause	Test	Result
	Type test:	
6.1	Islanding protection according table 6 - Load imbalance (real, reactive load)	Р
	for test condition A (EUT ouput = 100%)	
6.1	Load imbalance (reactive load) for test condition B (EUT output = 50 $\%$ –	Р
	66 %)	
6.1	Load imbalance (reactive load) for test condition C (EUT output = $25 \% -$	Р
	33 %)	

6.1		TABLE	E: Islanding p	protection (E	UT output	t = 100%)			Р
	Test condition	s		D	UN: Vistortion fa	ncy: 50+/-(=230+/-3Va actor of cho Quality =1	ac		
Dis	sconnection li	mit				s for MEA			
No	1) PEUT (% of EUT rating)	Reactive load (% of QL in 6.1.d) 1)	2) PAC (% of nominal)	3) QAC (% of nominal)	Run on Time (ms)	PEUT (kW per phase)	Actual Qf	V (V)	Remarks4)
1	100	100	0	0	176	39.891	0.998	818	Test A at BL
2	100	100	-5	-5	160	39.891	1.021	818	Test A at IB
3	100	100	-5	0	159	39.891	1.039	818	Test A at IB
4	100	100	-5	+5	138	39.891	1.081	818	Test A at IB
5	100	100	0	-5	134	39.891	0.972	818	Test A at IB
6	100	100	0	+5	168	39.891	1.020	818	Test A at IB
7	100	100	+5	-5	159	39.891	0.928	818	Test A at IB
8	100	100	+5	0	157	39.891	0.957	818	Test A at IB
9	100	100	+5	+5	157	39.891	0.964	818	Test A at IB
		•		•				•	
Para	meter at 0% p	per phase	L= 51	.49 mH	F	R= 17.32 Ω		C= 18	39.73 µF
IAC	fundamental balance conc		L1: 7	1 mA		L2: 89 mA		L3:	71 mA

		IEC 62116			
Clause	Requirement – Test		Result - Remar	ĸ	Verdict
te: C is adjust PE∪T: EU	ed to min. +/-1% of the inverter Γoutput power	r rated output power			
PAC: Real	power flow at S1 in Figure 1. F ie.	ositive means power f	rom EUT to utility. N	ominal is the 0 %	% test
st condition	ctive power flow at S1 in Figure value. ce condition, IB: Imbalance cor		ver from EUT to utili	ty. Nominal is the	e 0 %
	ower PEUT = Maximum5) tage 6) = 100% of rated input v	voltage range			
tput power Based on + 0.9 × (Y	EUT output power condition sh may exceed nominal rated out EUT rated input operating rang - X). Y shall not exceed 0.8 × e). In any case, the EUT should	put. ge. For example, If rang EUT maximum system	je is between X volt voltage (i.e., maxin	s and Y volts, 90 num allowable a) % of rang rray open
_	Disconnection	at P_{AC} 0% and Q_{AC} 0%	6 reactive load No.	6 Auto	
Ţ		Main : 1.25 M		2s/div	
Ę	Т1 0.6736 s Т2 0.8492 s V1 74.50 A V2 −33,00 A Д 0.1756 s	Max(C1) 379 N Rms(C1) 161 . Min(C2) 48.3 Max(C3) 277 . Rms(C3) 87.56	04 A Max(04)	354 V 47.0 A 15.3851 A 226.0 A 194.0 A	
	T2 0.8492 s ∀1 74.50 A ∀2 −33.00 A	Min(C2) -48.3 Max(C3) -277.5	04 A Max(C4) 5 A Rms(C4) 736 Hz	354 V 47.0 A 15.3851 A 226.0 A 194.0 A 86.8665 A 50ms/div	
	$= 12^{-0.8492} \times 12^{-74} \times 50^{-8} \times 12^{-74} \times 50^{-8} \times 12^{-74} \times 50^{-8} \times 12^{-74} \times 50^{-8} \times 12^{-74} \times 10^{-750} \times 12^{-74} $	Min(122) - 48.3 Max(03) 277.5 Rms(03) 87.55 Min(14) - 203.8 AvgFreq(04) - 50.04	04 A Max(C4) 5 A Rms(C4) 736 Hz		
	T2 0.8492 s V1 74.50 A V2 −33.00 A AT 0.1756 s 1/ΔΓ 5.69476 Hz	Min(122) - 48.3 Max(03) 277.5 Rms(03) 87.55 Min(14) - 203.8 AvgFreq(04) - 50.04	04 A Max(C4) 5 A Rms(C4) 736 Hz	50ms/div Push⊙:Toggk	

CH1. CH2. CH3: L1. L2. L3 current of EUT(8A/div); CH4. CH5. CH6: L1. L2. L3 I_{AC}(2A/div).

```
IEC 62116
                                                             Result - Remark
Clause
           Requirement - Test
```

Verdict

D

6.1 TABLE: Islanding protection (EUT output = 66%)

••••								Р		
I			Frequency: 50+/-0.1Hz UN=230+/-3Vac							
	Test condit	ions	Distortion factor of chokes < 2%							
Dis	connection li	mit	Quality =1 2s for MEA							
No	1) PEUT (% of EUT rating)	Reactive load (% of QL in 6.1.d) 1	f PAC (% of	3) QAC (% of nominal)	Run on Time (ms)	PEUT (kW per phase)	Actual Qf	V (V)	Remarks4)	
1	66	66	0	-5	216	26.628	0.985	700	Test B at IB	
2	66	66	0	-4	180	26.628	0.987	700	Test B at IB	
3	66	66	0	-3	183	26.628	0.981	700	Test B at IB	
4	66	66	0	-2	183	26.628	0.995	700	Test B at IB	
5	66	66	0	-1	155	26.628	0.998	700	Test B at IB	
6	66	66	0	0	196	26.628	1.001	700	Test B at BL	
7	66	66	0	1	173	26.628	1.009	700	Test B at IB	
8	66	66	0	2	167	26.628	1.012	700	Test B at IB	
9	66	66	0	3	165	26.628	1.017	700	Test B at IB	
10	66	66	0	4	162	26.628	1.022	700	Test B at IB	
11	66	66	0	5	159	26.628	1.027	700	Test B at IB	
Davas										

Parameter at 0% per phase	L= 78.43 mH	R= 24.39 Ω	C= 117.08 µF
IAC fundamental current at balance condition	L1: 16 mA	L2: 39 mA	L3: 41 mA

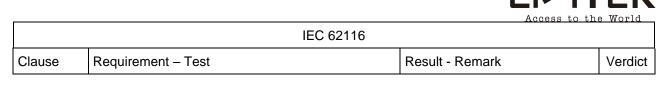
Note:

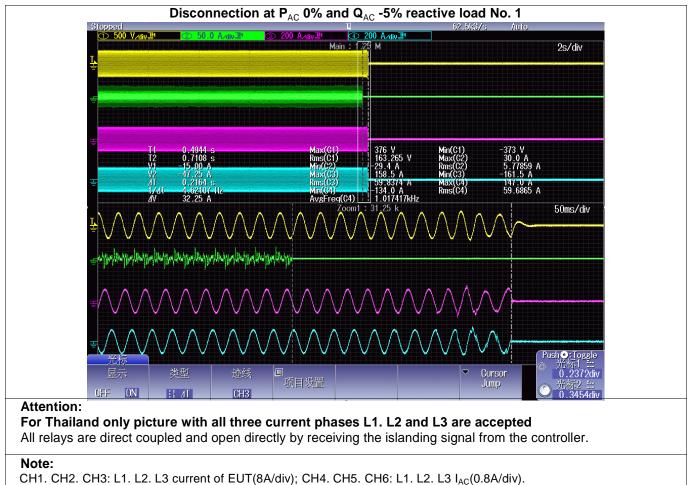
RLC is adjusted to min. +/-1% of the inverter rated output power 1) PEUT: EUT output power

2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

4) BL: Balance condition, IB: Imbalance condition.


Condition A:


EUT output power PEUT = Maximum 5)

EUT input voltage 6) = 66% of rated input voltage range

5) Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.

6) Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range $=X + 0.9 \times (Y - X)$. Y shall not exceed 0.8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

6.1 ⊤	ABLE: Island	ling protect	tion (EUT out	tput = 33%)					Р
	Frequency: 50+/-0.1Hz UN=220+/-3Vac								
	Test condit	ions		UN=220+/-3Vac Distortion factor of chokes < 2% Quality =1 2s for MEA					
Dis	sconnection li	mit			2	s for MEA			
	1) PEUT	Reactive load (% of	,	3) QAC	Run on	PEUT	Actual	V	
No	(% of EUT rating)	QL in 6.1.d) 1)	n (% of (% of Time (kW per Qf (V)		(V)	Remarks4)			
1	33	33	0	-5	227	13.227	0.977	590	Test C at IB
2	33	33	0	-4	175	13.227	0.983	590	Test C at IB

33

33

33

33

33

33

0

0

0

3

4

5

-3

-2

-1

161

176

174

13.227

13.227

13.227

0.987

0.992

0.998

590

590

590

Test C at IB

Test C at IB

Test C at IB

								Access t	o the World
				IEC 6	2116				
Clause Requirement – Test			est			Result - Remark Ve			Verdict
6	33	33	0	0	127	13.227	1.003	590	Test C at B
7	33	33	0	1	165	13.227	1.006	590	Test C at I
8	33	33	0	2	112	13.227	1.011	590	Test C at I
9	33	33	0	3	188	13.227	1.016	590	Test C at I
10	33	33	0	4	157	13.227	1.021	590	Test C at II
11	33	33	0	5	146	13.227	1.026	590	Test C at II
Parameter at 0% per phase		L= 150	L= 150.33 mH		R= 48.27 Ω		C= 65.49 µF		
		ental current at condition	L1: 4	2 mA		L2: 54 mA L3		L3:	44 mA

Note:

RLC is adjusted to min. +/-1% of the inverter rated output power

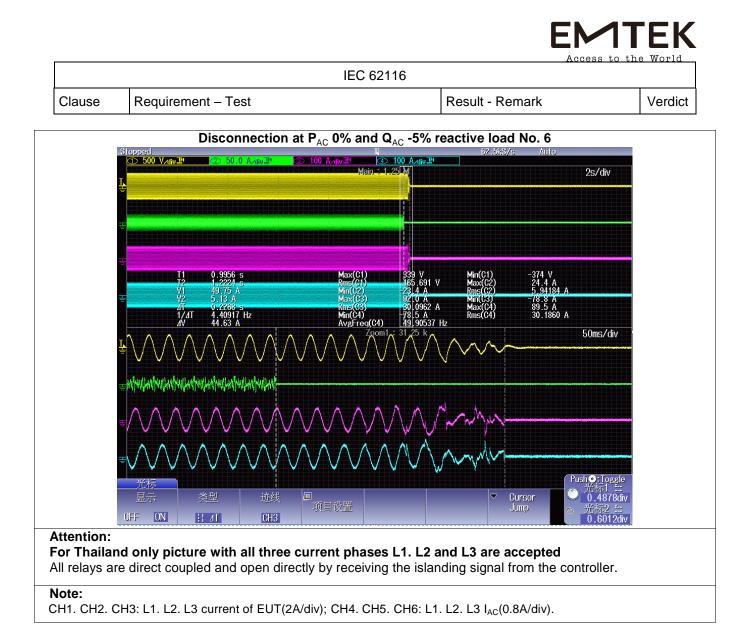
1) PEUT: EUT output power

2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

4) BL: Balance condition, IB: Imbalance condition.

Condition A:


EUT output power PEUT = Maximum 5)

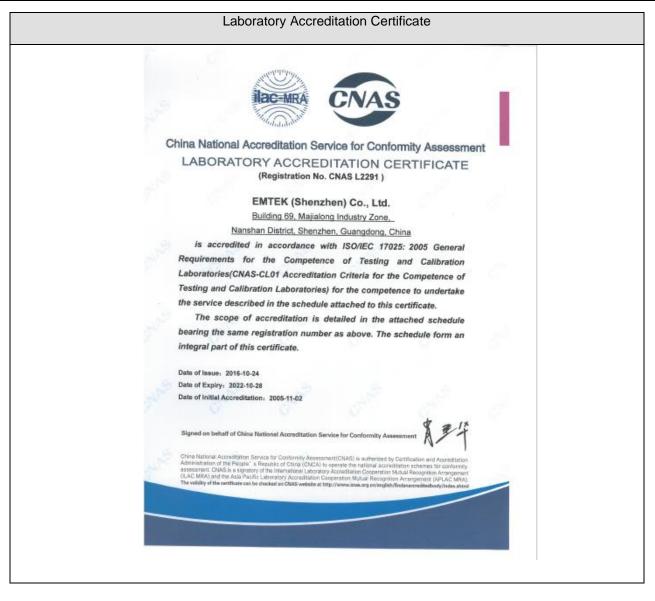
EUT input voltage 6) = 33% of rated input voltage range

5) Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.

6) Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 90 % of range $=X + 0.9 \times (Y - X)$. Y shall not exceed 0.8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

FMTFK

Pictures



Equipment of test

Equipment name	Trade name	Model	S/N	Cal. Due. Date
Power Analyzer	YOKOGAVA	WT3000	EP-011	2020/09/23
Programmable DC	GROWATT	DC1000	RD.02.100	
Programmable AC	GROWATT	AC1000	RD.02.101	
Programmable DC	Kewell	TVS-630kW	EP-027	
Programmable AC	APC	AFG-S-33800	EP-026	
Programmable RLC	Qunling	ACLT-38160H	EP-028	
Digital oscilloscope	YOKOGAVA	DL850	EP-001	2020/09/04
Differential probe	CYBERTEK	VP5200	EP-003	2020/09/00
Current probe	YOKOGAVA	CT-1000	EP-012	2020/09/23
Current probe	YOKOGAVA	CT-1000	EP-013	2020/09/23
Current probe	YOKOGAVA	CT-1000	EP-014	2020/09/23
Three phase impedance	Teseq	CCN 1000-3	EE206-1	2020/09/23
Signal conditioning Unit	Teseq/Germany	INA2197/37A	EE206-2	N/A
Three phase impedance	Teseq/Germany	INA 2196/75A	EE206-3	N/A

